


### **Document Control Sheet**

| Client        |              | Department of Comm     | unications, Climate Actio | n and Environment   |
|---------------|--------------|------------------------|---------------------------|---------------------|
| Project       |              | Environmental Monito   | oring of Former Mining A  | reas of             |
|               |              | Silvermines and Avoca  | a (2018-2020)             |                     |
| Project No:   |              | 118174                 |                           |                     |
| Report        |              | Data Report for the Fo | ormer Mining Area of Avo  | ca – September 2018 |
| Document Refe | erence:      | 118174/40/DG/12A       |                           |                     |
| Version       | Author       | Checked                | Reviewed                  | Date                |
| 1             | Project Team | R O'Carroll            | R L Olsen                 | November 2018       |
|               |              |                        |                           |                     |
|               |              |                        |                           |                     |
|               |              |                        |                           |                     |



### **Table of Contents**

| Section 1 | Objectives and Scope             | 1 |
|-----------|----------------------------------|---|
| Section 2 | Groundwater Monitoring Summary   | 2 |
| Section 3 | Surface Water Monitoring Summary | 3 |

### **Appendices**

**Appendix A Physico-chemical Field Data** 

**Appendix B Surface Water Flow Measurements** 

**Appendix C Groundwater Level Data/ Measurements** 

**Appendix D Photographs** 

**Appendix E Chain of Custody Records** 

**Appendix F Certificates of Analysis and Laboratory Analytical Data** 

**Appendix G Standard Reference Material Certificates** 

**Appendix H Field Data Sheets and Logbook Notes** 



### Section 1 Objectives and Scope

The Department of Communications, Climate Action and Environment (the Department) appointed CDM Smith Ireland Ltd (CDM Smith) to undertake a programme of environmental monitoring at the closed mine sites of Silvermines and Avoca, commencing in 2018.

The scope of the monitoring programme is defined in the *Environmental Monitoring of Former Mining Areas of Silvermines and Avoca Monitoring Plan*, (Document Ref: 118174/40/DG/01, dated February 2018) and sampling activities were performed in accordance with the programme and procedures set out therein.

This Data Report for the Avoca Mining Area contains all field observations and laboratory analytical results collected during the September 2018 round of monitoring. It is a stand-alone document but is intended to be read in conjunction with an Environmental Monitoring Report, to be issued in November 2018.

The report contains the data and information in appendices as follows:

- Appendix A: All physico-chemical field analyses (pH, DO, conductivity, ORP, temperature)
   collected in the field in Excel spreadsheets;
- Appendix B: All surface water flow measurements;
- Appendix C: All groundwater level measurements and downloads from data loggers in Excel spreadsheets;
- Appendix D: All relevant digital photographs contained on a CD;
- Appendix E: Chain of custody records;
- Appendix F: Certificates of Analysis laboratory report and laboratory analytical data;
- Appendix G: Standard reference material certificates; and
- Appendix H: Copies of field data sheets and logbook notes.



### Section 2 Groundwater Monitoring Summary

Seven groundwater wells were sampled on 6 and 7 September 2018. No sample was obtained from monitoring well SG104 due to the borehole being dry.

A clean Grundfos pump and dedicated tubing were lowered to midway along the well screen and samples were collected after field parameters were stabilised according to the low flow sampling method. The only exceptions were for GW1/05 and GW2/05. A blockage exists in GW1/05 and GW2/05 which prevents low flow sampling from being conducted. The samples were collected after greater than 3 volumes of the well had been purged and the field parameters had stabilised. Stabilisation of parameters was the primary requirement with respect to sampling time. If the field parameters had stabilised after 1.5 volumes of the well had been purged the sample was also taken.

Physico-chemical field data are summarised in **Appendix A** and analytical data are contained in **Appendix F**. Groundwater levels were measured at all monitoring wells using a portable electronic water level recorder. Automatic groundwater recorders are installed in six wells and data were downloaded. Groundwater level data are contained in **Appendix C**.

In accordance with the QA/QC Protocols set out in the Monitoring Plan, one duplicate groundwater sample and one decontamination blank were collected. The latter was obtained by sampling deionised water that was pumped through the groundwater pump after decontamination. One certified standard reference material containing known concentrations of the 18 metals was shipped blind to ALS laboratory (SRM certificate is contained in **Appendix G**).



### Section 3 Surface Water Monitoring Summary

Nineteen surface water locations were sampled between 4 and 5 September 2018. No sample could be obtained from Ballygahan Adit and because it was not discharging at the time of sampling. Photographs of each sampling site are contained in **Appendix D**. Field parameter measurements were also collected at each location. Physico-chemical field data are summarised in **Appendix A** and analytical data are contained in **Appendix F**.

Flow was measured at 10 locations using various methods depending upon the quantity of flow to be measured and any safety concerns. Additionally, data were obtained from the EPA for the existing automatic recorders at Whites Bridge (EPA station 10044) and Wicklow County Council Maintenance Yard (EPA Station 10045). Surface water flow data and measurement methodologies are contained in **Appendix B**.

In accordance with the Monitoring Plan, two duplicate surface water samples and one decontamination blank sample were collected. The latter was collected by sampling deionised water that was poured over the sampling equipment after the equipment had been decontaminated. One certified standard reference material containing known concentrations of the 18 metals was shipped blind to ALS laboratory (SRM certificate is contained in **Appendix G**).



## Appendix A

## Physico-Chemical Field Data

Excel files are also on attached CD



Table A-1 Avoca Physico-chemical Field Data Round 2 (2018) - Groundwater

| Sample ID | Date Sampled | pH<br>(field) | Temperature<br>(field) | Specific<br>Conductance<br>@ deg.C<br>(field) | Dissolved<br>Oxygen 1<br>(field) | Dissolved<br>Oxygen 2<br>(field) | ORP<br>(Field) |
|-----------|--------------|---------------|------------------------|-----------------------------------------------|----------------------------------|----------------------------------|----------------|
|           |              | pH Units      | °c                     | mS/cm                                         | % Sat                            | mg/I O <sub>2</sub>              | mV             |
| MWDA1     | 13/09/2018   | 2.80          | 13.0                   | 1.672                                         | 3.0                              | 0.30                             | 410            |
| MWDA2     | 13/09/2018   | 3.73          | 12.0                   | 1.625                                         | 2.1                              | 0.22                             | 240            |
| MWPF1     | 06/09/2018   | 4.59          | 11.0                   | 1.400                                         | 29.7                             | 3.28                             | 304            |
| MWET1     | 06/09/2018   | 3.31          | 12.1                   | 2.455                                         | 3.1                              | 0.43                             | 316            |
| MWET2     | 06/09/2018   | 6.06          | 11.5                   | 3.291                                         | 1.6                              | 0.17                             | 24.8           |
| GW1/05    | 07/09/2018   | 3.61          | 11.1                   | 1.678                                         | 39.5                             | 4.93                             | 413            |
| GW2/05    | 06/09/2018   | 3.52          | 12.1                   | 1.420                                         | 62.6                             | 6.66                             | 337            |
| SG104     | 06/09/2018   | -             | -                      | -                                             | -                                | -                                | -              |

Notes:

SG104 - No sample obtainable due to dry borehole

Table A-2 Avoca Physico-chemical Field Data Round 2 (2018) - Surface Water

| Sample ID                   | Date Sampled | pH<br>(field) | Temperature<br>(field) | Specific<br>Conductance<br>@ deg.C<br>(field) | Dissolved<br>Oxygen 1<br>(field) | Dissolved<br>Oxygen 2<br>(field) | ORP<br>(Field) |
|-----------------------------|--------------|---------------|------------------------|-----------------------------------------------|----------------------------------|----------------------------------|----------------|
|                             |              | pH Units      | °c                     | mS/cm                                         | % Sat                            | mg/I O <sub>2</sub>              | mV             |
| Cronebane Intermediate Adit | 04/09/2018   | 3.41          | 10.4                   | 1095                                          | 5                                | 0.55                             | 349            |
| Cronebane Shallow Adit      | 04/09/2018   | 2.61          | 10.5                   | 4160                                          | 12.5                             | 1.35                             | 496            |
| Deep Adit                   | 04/09/2018   | 3.14          | 11.1                   | 1552                                          | 52.3                             | 5.7                              | 428.2          |
| Deep Adit Confluence        | 04/09/2018   | 3.1           | 11.3                   | 1555                                          | 76.4                             | 8.34                             | 443            |
| Road Adit                   | 04/09/2018   | 3.77          | 12.9                   | 1268                                          | 34.4                             | 3.64                             | 339.8          |
| Road Adit Confluence        | 04/09/2018   | 3.79          | 12.8                   | 1269                                          | 87.3                             | 9.2                              | 353.2          |
| US Tigroney West (Drainage) | 04/09/2018   |               |                        |                                               |                                  |                                  |                |
| 850 Adit (portal)           | 04/09/2018   | 2.89          | 10.8                   | 1342                                          | 91.1                             | 10.05                            | 514            |
| Ballygahan Adit             | 05/09/2018   | n/a           | n/a                    | n/a                                           | n/a                              | n/a                              | n/a            |
| Site T1                     | 05/09/2018   | 6.97          | 14.9                   | 77.6                                          | 105                              | 10.63                            | 192            |
| US Whites Bridge            | 05/09/2018   | 6.69          | 13.8                   | 68.6                                          | 94.9                             | 9.84                             | 204            |
| Whites Bridge               | 05/09/2018   | 6.44          | 15                     | 74.1                                          | 106                              | 10.8                             | 211            |
| Whites Bridge GS            | 05/09/2018   | 6.21          | 14.3                   | 84                                            | 104                              | 10.69                            | 213            |
| DS Deep Adit                | 05/09/2018   | 6.17          | 14.4                   | 80.4                                          | 108.7                            | 11.09                            | 188            |
| DS Millrace                 | 05/09/2018   | 6.2           | 14.1                   | 81.7                                          | 103                              | 10.59                            | 193            |
| US Ballygahan Adit          | 05/09/2018   | 5.93          | 13.5                   | 86.3                                          | 107                              | 11.1                             | 203            |
| US Road Adit                | 05/09/2018   | 5.81          | 13                     | 91                                            | 107.2                            | 11.29                            | 202            |
| WCC Main. Yard GS           | 05/09/2018   | 5.65          | 12.8                   | 127                                           | 106                              | 11.2                             | 196            |
| Site T5                     | 05/09/2018   | 5.86          | 12.5                   | 113.9                                         | 101.4                            | 10.85                            | 179            |
| Avoca Bridge                | 05/09/2018   | 6             | 11.7                   | 100                                           | 97.9                             | 10.59                            | 151            |

Notes

Ballygahan Adit - No flow on 05 September 2018

## Appendix B

### **Surface Water Flow Measurements**

Excel files are also on attached CD



Table B-1 Avoca Surface Water Flow Measurements - Round 2 (2018)

| Site Name                           | Flow m <sup>3</sup> /s | Flow I/s | Date       | Method                                              | Notes                                                            |
|-------------------------------------|------------------------|----------|------------|-----------------------------------------------------|------------------------------------------------------------------|
| Site T1 (Avoca River)               | 1.68                   | 1676     | 05/09/2018 | Flow meter                                          | Flow recorded at 16:30                                           |
| US Whites Bridge                    | 1.16                   | 1160     | 05/09/2018 | Calculated                                          | Flow recorded at 16:00                                           |
| Whites Bridge                       | 1.16                   | 1160     | 05/09/2018 | Calculated                                          | Flow recorded at 15:45                                           |
| White's Bridge GS                   | 1.18                   | 1180     | 05/09/2018 | Automatic recorder (Data from EPA)                  | Flow recorded at 13:30                                           |
| DS Deep Adit                        | 1.18                   | 1184     | 05/09/2018 | Calculated                                          | Flow recorded at 14:20                                           |
| DS Millrace                         | 1.19                   | 1188     | 05/09/2018 | Calculated                                          | Flow recorded at 14:00                                           |
| US Ballygahan Adit                  | 1.28                   | 1280     | 05/09/2018 | Calculated                                          | Flow recorded at 12:40                                           |
| US Road Adit                        | 1.28                   | 1282     | 05/09/2018 | Calculated                                          | Flow recorded at 12:00                                           |
| Wicklow Co Co. Maintenance Yard GS  | 1.29                   | 1290     | 05/09/2018 | Calculated                                          | Flow recorded at 11:45                                           |
| Site T5                             | 1.18                   | 1185     | 05/09/2018 | Flow meter                                          | Flow recorded at 10:45                                           |
| Avoca Bridge                        | 1.02                   | 1023     | 05/09/2018 | Float Method, with depth profile using wading staff | Flow recorded at 8:45                                            |
| 850 Adit                            | 0.00                   | 1.2      | 04/09/2018 | Flow Meter - Marsh McBirney                         | -                                                                |
| Deep Adit                           | 0.01                   | 8.5      | 04/09/2018 | Flow Meter - Marsh McBirney                         | -                                                                |
| Deep Adit Confluence                | 0.00                   | 3.9      | 04/09/2018 | Flume                                               | Upstream Gauge - 0.25 ft on 4 inch flume, capturing 95% of flow. |
| Road Adit                           | 0.02                   | 16.8     | 04/09/2018 | Flow Meter - Marsh McBirney                         | Upstream Gauge - 0.22 m.                                         |
| Road Adit Confluence                | 0.01                   | 7.9      | 04/09/2018 | Flow Meter - Marsh McBirney                         | -                                                                |
| Cronebane Intermediate Adit         | 0.002                  | 2.2      | 04/09/2018 | Flume                                               | Upstream Gauge - 0.19 ft on 4 inch flume, capturing 95% of flow. |
| Cronebane Shallow Adit              | 0.000                  | 0.1      | 04/09/2018 | Bucket and stop watch                               | -                                                                |
| US Tigroney West (Drainage Channel) | -                      | -        | 04/09/2018 | No Flow                                             | -                                                                |
| Vale View                           | -                      | -        | 05/09/2018 | No Flow                                             | Recorded at 16:00                                                |

## Appendix C

## Groundwater Level Data/ Measurements

Excel files are also on attached CD



Table C-1 Avoca Groundwater Level Measurements Round 2 (2018)

| Borehole Identifier:           | MWDA1      | MWDA2      | MWET1      | MWET2      | MWPF1      | GW1/05     | GW2/05     | SG104      |
|--------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Top of Casing Elevation (mOD): | 32.79      | 32.62      | 33.39      | 33.37      | 31.49      | 30.80      | 30.95      | 58.17      |
| Date:                          | 13/09/2018 | 13/09/2018 | 06/09/2018 | 06/09/2018 | 06/09/2018 | 07/09/2018 | 06/09/2018 | 07/09/2018 |
| Time:                          | 15:00      | 14:45      | 14:10      | 15:30      | 10:00      | 09:15      | 17:15      | 11:00      |
| Depth to Groundwater (m bTOC): | 6.29       | 6.40       | 7.63       | 7.54       | 4.83       | 5.74       | 5.59       | -          |
| Groundwater Elevation (m OD):  | 26.51      | 26.23      | 25.76      | 25.83      | 26.66      | 25.07      | 25.37      | -          |

#### Notes:

m is metres

OD is Ordnance Datum

bTOC is below top of casing

## Appendix D

## Photographs

Appendix is on attached CD as .jpg files



## Appendix E

**Chain of Custody Records** 





Address: Units 7-8 Hawarden Business Park, Manor Road, Hawarden, Deeside, CH5 3US

Fmail: hawardencustomerservices@alsglobal.com

|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                            |                                 |         |     |       |             |             |             | Linean.   | awaracii | customers  | ervicese aisgiobal.com | A                                                              |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------|---------------------------------|---------|-----|-------|-------------|-------------|-------------|-----------|----------|------------|------------------------|----------------------------------------------------------------|
| CLIENT: COM                | SMITH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CONTACT N                    | NAME: LAU                                  | MA                              | POLE    | 1   | Date  | samples d   | espatched   | 05.0        | 7.18.     |          |            |                        | Sheet                                                          |
| ADDRESS: 15                | Westworth Eblan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              | -MAIL: LAU                                 |                                 |         |     |       |             | + 40        | 55          |           |          | @mis Sch   | edule: YES / NO        | of                                                             |
| VILLAS                     | Arblin 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CONTACT P                    | PHONE: ON                                  | 3.39                            | H32     | 32. | ALS ( | uote Num    | ber: 49     | 153         | (Vea3)    |          |            |                        | Report format                                                  |
| PROJECT LOCATION           | ON: AVOCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                            | L CONTACTS:                                |                                 |         |     | PO N  | umber (If I | required):  |             |           |          | Turnarou   | ınd – please tick      | Standard                                                       |
| PROJECT REFEREN            | VCE: 118174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 085                          | 8342                                       | 584                             |         |     | 1     | 914         | -4          |             |           | 7        | day turna  | round                  | Cross Tab                                                      |
| MATRIX INFORMA             | ATION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                            | Known Ha                        | azards: |     | Third | party inv   | oicing deta | ils (if app | licable): | 5        | day turna  | round                  | NG                                                             |
| Please note that m         | atrix specification is a mandatory field. P<br>s(G), Product(P), Sludge(SL), Unspecified S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Please select                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | appropriate re               | eference                                   |                                 |         |     |       |             |             |             |           | 4        | day turna  | round                  | AGS                                                            |
| WATER MATRICES             | and the control of th | Jona (3113).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |                                            |                                 |         |     | -     |             |             |             |           | 3        | day turna  | round                  | Equis                                                          |
| Leachate (PL), Untr        | ), Surface Water (SW), Drinking Water (DW<br>reated Sewage (US), Treated Sewage (TS),<br>, Recreational Water (RE) and Unspecified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Trade Efflue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nt (TE), Saline              | pared<br>Water (SA),                       |                                 |         |     |       | _           |             |             |           |          | (please sp |                        | Other (please specify):                                        |
|                            | SAMPLE INFORMAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Voil 1                       |                                            |                                 |         |     | SUITE | /ANALY      | SIS REQU    | JIRED       |           |          |            | Additiona              | I Information                                                  |
| DATE / TIME OF<br>SAMPLING | SAMPLE ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DEPTH IN<br>METRES<br>(TOP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DEPTH IN<br>METRES<br>(BASE) | MATRIX:<br>Please refer<br>to key<br>above | 4669/5, heavens<br>44153(46a-3) |         |     |       |             |             |             |           |          |            | dilutions, or sam      | ely contaminant levels,<br>ples requiring specific<br>analysis |
| 04.09.18.                  | ROAD ADITO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A CONTRACTOR OF THE PARTY OF TH |                              | SW                                         | 1/                              |         |     |       |             |             |             |           |          |            | No Ca on               | TOC amplyis                                                    |
| 1                          | ROAD ADIT Conf.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                            | 1                                          |                                 |         |     |       |             |             |             |           |          |            | 100 (00                | I arriegis                                                     |
|                            | Deep ADITO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                            |                                 |         |     |       |             |             |             |           |          |            |                        |                                                                |
|                            | Deal ADIT CONF.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |                                            |                                 |         | 144 |       |             |             |             |           |          |            |                        |                                                                |
|                            | -850 ADIT .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                            |                                 |         |     |       |             |             |             |           |          |            |                        |                                                                |
| To Carlot                  | Cronebane Shallow Adit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                            |                                 |         |     |       |             |             |             |           | 1        |            |                        |                                                                |
| 0.                         | Ronebane Inter Adit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                            |                                 |         |     |       |             |             |             |           |          |            | 1                      |                                                                |
|                            | AVSR 102-11-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                            |                                 |         |     |       |             |             |             |           |          |            | Nitric                 | ONLY.                                                          |
|                            | WB01-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |                                            |                                 |         |     |       |             |             |             |           |          |            |                        | 1                                                              |
|                            | WB02-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                            |                                 |         |     |       |             |             |             |           |          |            |                        |                                                                |
|                            | SMVD601:11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                            |                                 |         |     |       |             |             |             |           |          |            |                        |                                                                |
| V                          | SMSDB01-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                            | ~                                          | V                               |         |     |       |             |             |             |           |          |            | 1                      | 1                                                              |
| 1                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                            |                                 |         |     |       |             |             | 140         |           |          |            |                        |                                                                |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                            |                                 |         |     |       |             |             |             |           |          |            |                        |                                                                |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                            |                                 |         |     |       |             |             |             |           |          |            |                        |                                                                |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | Т.                                         |                                 |         |     |       |             | 1           |             |           |          |            |                        |                                                                |



Address: Units 7-8 Hawarden Business Park, Manor Road, Hawarden, Deeside, CH5 3US

Email: hawardencustomerservices@alsglobal.com

| CLIENT: CDM                | Smith                                                                                                                           |                             | CONTACT N                    | Carl 1                                     | JRA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FOLEY    |         | Date sa | mples de    | spatched:  | 6.5          | 81.18    |       |            |                   | Sheet                                                          |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|---------|-------------|------------|--------------|----------|-------|------------|-------------------|----------------------------------------------------------------|
| ADDRESS: \5                | Wentworth Eblo                                                                                                                  | MA                          | CONTACT E                    | -MAIL:                                     | va.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Paley e  |         | Sample  | r: La       | 110        | F510         |          |       | @mis Sch   | edule: YES / NO   | of                                                             |
| Villas, D.                 | 16cm 2 , DOZA61                                                                                                                 |                             | CONTACT P                    | HONE: CO                                   | man                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ith. Lor | v .     |         | ote Numb    | er: 4      |              | 3 00     | 3)    |            |                   | Report format                                                  |
| PROJECT LOCATIO            | ON: AVOCA                                                                                                                       |                             |                              |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 391323   | in de . | PO Nur  | nber (If re | equired):  |              |          |       | Turnarou   | nd - please tick  | Standard                                                       |
| PROJECT REFEREN            | CE: 118174                                                                                                                      |                             | 085                          | 5 834                                      | on co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$ 2584  |         |         | 1181        | 74         |              |          | 7     | day turnar | round             | Cross Tab                                                      |
| MATRIX INFORMA             | TION:                                                                                                                           |                             |                              |                                            | Known H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | azards:  |         | Third p | arty invo   | icing deta | ils (if appl | icable): | 5     | day turnar | ound              | NG                                                             |
|                            | atrix specification is a mandatory field. Pl<br>s(G), Product(P), Sludge(SL), Unspecified S                                     |                             | appropriate re               | eference                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1       |         |             |            | 40           |          | 4     | day turnar | round             | AGS                                                            |
| WATER MATRICES             |                                                                                                                                 |                             |                              |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |         |             |            |              |          | 3     | day turnar | round             | Equis                                                          |
| Leachate (PL), Untr        | , Surface Water (SW), Drinking Water (DW,<br>eated Sewage (US), Treated Sewage (TS),<br>Recreational Water (RE) and Unspecified | Trade Effluer               | nt (TE), Saline              |                                            | 37.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |         |         |             | /          |              |          | Other | (please sp | ecify):           | Other (please specify):                                        |
|                            | SAMPLE INFORMATI                                                                                                                | ON                          |                              |                                            | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |         | SUITE/  | ANALYS      | IS REQU    | JIRED        |          |       |            | Additiona         | I Information                                                  |
|                            |                                                                                                                                 |                             |                              |                                            | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | in and  |         |             |            |              |          |       |            |                   |                                                                |
| DATE / TIME OF<br>SAMPLING | SAMPLE ID                                                                                                                       | DEPTH IN<br>METRES<br>(TOP) | DEPTH IN<br>METRES<br>(BASE) | MATRIX:<br>Please refer<br>to key<br>above | 0 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |         |         |             |            |              |          |       |            | dilutions, or sam | ely contaminant levels,<br>ples requiring specific<br>analysis |
| 5.9.19                     | Augus Baileas                                                                                                                   |                             |                              | SW                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |         |         |             |            |              |          |       |            |                   |                                                                |
| 2 113                      | Avoca Bridge                                                                                                                    |                             |                              |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |         |             |            |              |          |       |            |                   |                                                                |
|                            | WCC Hant. Mara                                                                                                                  |                             |                              |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |         |             |            |              |          |       |            |                   |                                                                |
| 4                          | 115 of Dood Adult                                                                                                               |                             |                              |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |         |             |            |              |          |       |            | -                 |                                                                |
|                            | LLS Rellypology ADI                                                                                                             |                             |                              |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |         |             |            |              |          |       |            |                   |                                                                |
|                            | Whites Boilde                                                                                                                   |                             |                              |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |         |             |            |              |          |       |            |                   |                                                                |
|                            | US of Road Adit<br>US Ballygahan ADI<br>Whites Bridge<br>Whites Bridge GS                                                       |                             |                              |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |         |             |            |              |          |       |            |                   |                                                                |
|                            | DS Deep Tolit                                                                                                                   |                             |                              |                                            | The same of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |         |         |             |            |              |          |       |            |                   |                                                                |
|                            | DS HILL Roce                                                                                                                    |                             |                              |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |         |             |            |              |          |       |            |                   |                                                                |
|                            | us whites Bridge                                                                                                                |                             |                              | -                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |         |             |            |              |          |       |            |                   |                                                                |
|                            | 4-1-                                                                                                                            |                             |                              |                                            | A Administration of the Control of t |          |         |         |             |            |              |          |       |            |                   |                                                                |
| (2)                        | AV5001-11                                                                                                                       |                             |                              | -                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |         |         |             |            |              |          |       |            | bitac only        | bottok or Co                                                   |
| 0                          | AV3002.11                                                                                                                       |                             |                              | -                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |         |             |            |              |          |       |            | 44.               |                                                                |
|                            | AVAB 02-11                                                                                                                      |                             |                              | V                                          | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |         |         |             |            |              |          |       |            | 1                 |                                                                |
|                            |                                                                                                                                 |                             |                              |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |         |             |            |              |          |       |            |                   |                                                                |
|                            |                                                                                                                                 |                             |                              |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |         |             |            |              |          |       |            |                   |                                                                |
|                            |                                                                                                                                 |                             |                              | TOTAL                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |         |             |            |              |          |       |            |                   |                                                                |



Address: Units 7-8 Hawarden Business Park, Manor Road, Hawarden, Deeside, CH5 3US

Email: hawardencustomerservices@alsglobal.com

| CLIENT: COM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Smith                                                                                                                          |                             | CONTACT N                    | AME:                                       | ura     | Tole    | Lang . | Date                                   | samples d        | espatched   | : 7.0        | 7.18.     |       |            |                          | Sheet                                                                         |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------|--------------------------------------------|---------|---------|--------|----------------------------------------|------------------|-------------|--------------|-----------|-------|------------|--------------------------|-------------------------------------------------------------------------------|-----|
| ADDRESS: 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Westworth, Eblan                                                                                                               |                             | CONTACT E                    | MAIL:                                      | va.     | Boley   | 2      | Sam                                    | oler:            | 410         | 一下           | 101-      |       | @mis Sch   | edule: YES / No          | O of                                                                          |     |
| Villas, De                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15LU 2, DO2 A611                                                                                                               |                             |                              | HONE: CO                                   | m so    | 639     | mc.    | ALS                                    | Quote Num        | ber: 49     | 153 (        | JE 3      | )     |            |                          | Report format                                                                 |     |
| PROJECT LOCATIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ON: Ayoca                                                                                                                      |                             | ADDITIONAL                   | CONTACTS:                                  | 00      | 0       | 85 83  |                                        | umber (If i      | required):  |              |           |       | Turnarou   | nd - please tic          | k Standard                                                                    |     |
| PROJECT REFEREN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CE: 118174 ·                                                                                                                   |                             | AUG                          |                                            |         |         | 258    | 4                                      | 1181             | 74_         | R2.          |           | 7     | day turna  | round                    | Cross Tab                                                                     |     |
| MATRIX INFORMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                |                             |                              |                                            | Known H | azards: |        | Thir                                   | d party inv      | oicing deta | ails (if app | licable): | 5     | day turna  | round                    | NG                                                                            |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | atrix specification is a mandatory field. P<br>s(G), Product(P), Sludge(SL), Unspecified S                                     |                             | appropriate re               | eference                                   |         | ,       | /      |                                        |                  |             | 1            |           | 4     | day turna  | round                    | AGS                                                                           |     |
| WATER MATRICES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                |                             |                              |                                            |         | /       |        |                                        |                  | /           |              |           | 3     | day turna  | round                    | Equis                                                                         |     |
| Leachate (PL), Untr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | , Surface Water (SW), Drinking Water (DW<br>eated Sewage (US), Treated Sewage (TS),<br>Recreational Water (RE) and Unspecified | Trade Effluer               | nt (TE), Saline              | vared<br>Water (SA),                       | 1       |         |        |                                        |                  |             |              |           | Other | (please sp | ecify):                  | Other (please specify):                                                       |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SAMPLE INFORMAT                                                                                                                | ION                         |                              |                                            |         |         |        | SUIT                                   | E/ANALY          | SIS REQU    | UIRED        |           |       |            | Add                      | ditional Information                                                          |     |
| DATE / TIME OF<br>SAMPLING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SAMPLE ID                                                                                                                      | DEPTH IN<br>METRES<br>(TOP) | DEPTH IN<br>METRES<br>(BASE) | MATRIX:<br>Please refer<br>to key<br>above |         |         | e de   |                                        |                  |             |              |           |       |            | Comments<br>dilutions, o | on likely contaminant levels,<br>or samples requiring specific<br>QC analysis |     |
| 6.9.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HWPF 1                                                                                                                         |                             |                              | SW                                         |         | 7       | As     | per                                    | a vot            | 0 49        | 153          | luco      | 3)    |            | No To                    | C or Co andles                                                                | · e |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MW DA 1                                                                                                                        |                             |                              | No. of Contrast of                         |         |         | Lud    | 1                                      | 0                | TOC         | or           | Ca        | ,     |            | 1                        |                                                                               |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MW DAZ                                                                                                                         |                             |                              |                                            |         |         |        | ************************************** | append<br>append |             |              |           |       |            |                          |                                                                               |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MW ET1                                                                                                                         |                             |                              |                                            |         | 1       | OLA    | aly.                                   | sin              | plea        | ere          |           |       |            |                          |                                                                               |     |
| April 1 de la constitución de la | MWETZ.                                                                                                                         |                             |                              |                                            |         |         |        |                                        |                  | 3           |              |           |       |            |                          |                                                                               |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sw2 /05                                                                                                                        |                             |                              | V                                          |         |         |        |                                        |                  |             |              |           |       |            |                          |                                                                               |     |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AVDBOI-11                                                                                                                      |                             |                              | PR                                         |         |         |        |                                        |                  |             |              |           |       |            |                          |                                                                               |     |
| 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AVSRO1.11                                                                                                                      |                             |                              | 1                                          |         |         |        |                                        |                  |             |              |           |       |            | V                        | •                                                                             |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                |                             |                              |                                            |         |         |        |                                        |                  |             |              |           |       |            |                          |                                                                               |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                |                             |                              |                                            |         |         |        |                                        |                  |             |              |           |       |            |                          |                                                                               |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                |                             |                              |                                            |         |         |        |                                        |                  |             |              |           |       |            |                          |                                                                               |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                |                             |                              |                                            |         |         |        |                                        |                  |             | - 2          |           |       |            |                          |                                                                               |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                |                             |                              |                                            |         |         |        |                                        |                  |             |              |           |       |            |                          |                                                                               |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                |                             |                              |                                            |         |         |        |                                        |                  |             |              |           |       |            |                          |                                                                               |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                |                             |                              | TOTAL                                      |         |         |        |                                        |                  |             |              |           |       |            |                          |                                                                               |     |



Address: Units 7-8 Hawarden Business Park, Manor Road, Hawarden, Deeside, CH5 3US

| (ALS)                                                   |                                                                                                    |                             |                              |                                            |               |        |                |                     | Email: ha    | wardencustome | rservices@alsglobal.co | m                                                 |                       |
|---------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------|------------------------------|--------------------------------------------|---------------|--------|----------------|---------------------|--------------|---------------|------------------------|---------------------------------------------------|-----------------------|
| CLIENT: CON S                                           | Smith                                                                                              |                             | CONTACT N                    | IAME:                                      | ura           | Polecy | Date samples   | despatched:         | . 9.18       |               |                        | Sheet                                             |                       |
|                                                         | entwoorth Ebi                                                                                      | 010                         | CONTACT E                    |                                            | re fores      |        | Sampler:       | 4                   | Shia         | @mis So       | chedule: YES / NO      | of                                                |                       |
|                                                         | 113 A SOC 611                                                                                      |                             | CONTACT P                    | HONE:                                      | 86 391        | 3232   | ALS Quote Nu   | mber: 49153         |              |               |                        | Report fo                                         | rmat                  |
| PROJECT LOCATION:                                       | Avoca                                                                                              |                             |                              | L CONTACTS:                                |               |        | PO Number (II  | required):          |              | Turnar        | ound - please tick     | Standard                                          |                       |
| PROJECT REFERENCE:                                      | 118174                                                                                             |                             |                              | 0 She                                      | 2584          |        | 1181           | 74- 12              |              | 7 day turr    | naround                | Cross Tab                                         |                       |
| MATRIX INFORMATION                                      |                                                                                                    |                             |                              |                                            | Known Hazards |        | Third party in | voicing details (if | applicable): | 5 day turr    | naround                | NG                                                |                       |
| Please note that matrix s<br>code: Soils(S), Gas(G), Pr | pecification is a mandatory fie roduct(P), Sludge(SL), Unspecifi                                   | ld. Please select a         | appropriate re               | eference                                   |               |        |                |                     |              | 4 day turr    | naround                | AGS                                               |                       |
| WATER MATRICES:                                         | , , , , , , , , , , , , , , , , , , ,                                                              | (O113).                     |                              |                                            |               |        |                |                     |              | 3 day turr    | naround                | Equis                                             |                       |
| Leachate (PL), Untreated                                | ace Water (SW), Drinking Water<br>Sewage (US), Treated Sewage (<br>eational Water (RE) and Unspeci | TS), Trade Effluer          | nt (TE), Saline              |                                            |               |        |                |                     |              | Other (please | specify):              | Other (please                                     | specify):             |
|                                                         | SAMPLE INFORM                                                                                      | ATION                       |                              |                                            |               |        | SUITE/ANAL     | YSIS REQUIRED       |              |               | Additio                | nal Information                                   |                       |
| DATE / TIME OF<br>SAMPLING                              | SAMPLE ID                                                                                          | DEPTH IN<br>METRES<br>(TOP) | DEPTH IN<br>METRES<br>(BASE) | MATRIX:<br>Please refer<br>to key<br>above | duore 49153   |        |                |                     |              | 4             | dilutions, or sa       | ikely contaminan<br>mples requiring<br>C analysis | t levels,<br>specific |
| 7.9.18 91                                               | N1 /05                                                                                             |                             |                              | Sw                                         |               |        |                |                     |              |               | DO TO                  | of cor co                                         | onel                  |
| " AV                                                    | (GD 01.11                                                                                          |                             |                              | PR.                                        |               |        |                |                     |              |               | No TO O                |                                                   |                       |

Signature:

### ALS HAWARDEN CHAIN OF CUSTODY FORM

Address: Units 7-8 Hawarden Business Park, Manor Road, Hawarden, Deeside, CH5 3US

|                            |                                                                                                                                     |                             |                              |                                            |           |           |        |     |                |            |              | Email     | l: hawarder | ncustomers                  | ervices@alsglobal.com                      |                                             |                        |        |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------|--------------------------------------------|-----------|-----------|--------|-----|----------------|------------|--------------|-----------|-------------|-----------------------------|--------------------------------------------|---------------------------------------------|------------------------|--------|
| CLIENT: CO                 | 4 Smith                                                                                                                             |                             | CONTACT                      | NAME:                                      | we        | 五         | 1en    | Da  | ate samples d  | espatche   | d: 14        | 59,10     | 2           |                             |                                            | Sheet                                       |                        |        |
| ADDRESS: 15                | Westworth, Es                                                                                                                       | lara,                       | CONTACT                      |                                            |           |           | with u | Sai | impler:        | use        |              | 1 A       |             | @mis Sch                    | edule: YES / NO                            | of                                          |                        | 1      |
| Villas )                   | DIASI 6 3 NOO 16                                                                                                                    | 11                          | CONTACT                      | PHONE:                                     | 209       |           | 3232   | AL  | S Quote Num    | ber: 4     | 7153         | Ner 3     | NA 12       | رن.                         |                                            | Report fo                                   | ormat                  |        |
| PROJECT LOCATIO            | ON: SIlvemus A                                                                                                                      | voca                        |                              | L CONTACTS                                 | 5:        |           |        | PO  | Number (If i   | required): |              |           | -           | Turnarou                    | ınd - please tick                          | Standard                                    |                        |        |
| PROJECT REFEREN            | NCE: 118174.                                                                                                                        |                             | MUC                          | 85 85                                      | phia 74 a | 584       | 45.00  |     | 1181           | +4         | . ).         | 3.0       | )           | 7 day turna                 | round                                      | Cross Tab                                   |                        |        |
| MATRIX INFORMA             |                                                                                                                                     |                             |                              | ا در الاسالات                              | Known H   | lazards:  |        | Th  | nird party inv | oicing det | ails (if app | licable): |             | 5 day turna                 |                                            | NG                                          |                        |        |
| Please note that m         | natrix specification is a mandatory field. P<br>is(G), Product(P), Sludge(SL), Unspecified S                                        | lease select a              | appropriate r                | eference                                   |           |           |        |     |                |            | -            |           |             | 4 day turna                 |                                            | AGS                                         |                        |        |
| WATER MATRICES             |                                                                                                                                     | ona (0145).                 |                              |                                            |           | -         |        |     |                |            |              |           |             |                             |                                            |                                             |                        |        |
| Leachate (PL), Untr        | 0), Surface Water (SW), Drinking Water (DW<br>reated Sewage (US), Treated Sewage (TS),<br>, Recreational Water (RE) and Unspecified | Trade Effluer               | nt (TE), Saline              | oared<br>Water (SA),                       | /         |           |        |     |                |            |              |           |             | 3 day turna<br>r (please sp | V                                          | Other (please                               | e specify):            |        |
|                            | SAMPLE INFORMAT                                                                                                                     | ION                         |                              | 10.                                        |           |           |        | SUI | ITE/ANALY      | SIS REQ    | UIRED        |           |             |                             | Additiona                                  | al Informatio                               | n                      |        |
| DATE / TIME OF<br>SAMPLING | SAMPLE ID                                                                                                                           | DEPTH IN<br>METRES<br>(TOP) | DEPTH IN<br>METRES<br>(BASE) | MATRIX:<br>Please refer<br>to key<br>above |           |           |        |     |                |            |              |           |             |                             | Comments on lik<br>dilutions, or sam<br>QC | ely contamina<br>ples requiring<br>analysis | nt levels,<br>specific |        |
| 13.9.18                    | Sw1-5H                                                                                                                              |                             |                              | SW                                         | 1         |           |        | R   |                |            |              |           |             |                             |                                            |                                             |                        |        |
|                            | SW2-SM-South                                                                                                                        |                             |                              | 1                                          |           |           |        | 0 - | 9 40           | 10         | 49           | 153       | Cuer.       | 3)                          | 15-500                                     | ^                                           |                        |        |
|                            | SW3 - SM                                                                                                                            |                             |                              |                                            |           |           |        | A   | Jole           | Z          |              |           |             |                             | No TOC                                     | 01 6                                        | anol                   | JSIS   |
|                            | SW4-SH-GA                                                                                                                           |                             |                              |                                            | 1         | -         | TOC    | -   | Ca             | on         | 7000         | aple      | DA          | ALAN DE                     |                                            |                                             |                        |        |
|                            | SW5-SH                                                                                                                              |                             |                              |                                            | 1         | - Company |        | 2/5 | 008            | Och I      | 000          |           | mple        | 2-)                         |                                            |                                             |                        |        |
|                            | SW6 - SH.                                                                                                                           |                             |                              |                                            |           |           | AVIET  |     | 001            | 7          | Dee          | ~~?()     | nne         | ريد                         |                                            | -                                           |                        |        |
|                            | MWDAL -                                                                                                                             |                             |                              | GW                                         | 1         |           |        |     |                |            |              | -         |             |                             | 11-CTOC                                    |                                             |                        |        |
|                            | MWDA2                                                                                                                               |                             |                              | GW                                         |           |           |        |     |                |            |              |           |             |                             | No TOC . Hetels                            | 01                                          | a and                  | والإيء |
|                            | SMSD 03.11                                                                                                                          |                             |                              | PR                                         |           |           |        |     |                |            |              |           |             |                             | No TOL O                                   | orlaa                                       | naiys                  | ols.   |
| 1                          | SM DB 02.11                                                                                                                         |                             |                              | PR                                         |           |           |        |     |                |            |              |           |             |                             | Metals                                     | oncy                                        |                        | 100    |
|                            |                                                                                                                                     |                             |                              |                                            |           |           |        |     |                |            |              |           |             |                             | lierals                                    | only                                        |                        |        |
|                            |                                                                                                                                     |                             |                              |                                            |           |           |        |     |                |            |              |           |             |                             |                                            |                                             |                        |        |
|                            |                                                                                                                                     |                             |                              |                                            |           |           |        |     |                |            |              |           |             |                             |                                            |                                             |                        |        |
|                            |                                                                                                                                     |                             |                              |                                            |           |           |        |     |                |            |              |           |             |                             |                                            |                                             |                        |        |
|                            |                                                                                                                                     |                             |                              |                                            |           |           |        |     |                |            |              |           |             |                             |                                            |                                             |                        |        |
|                            |                                                                                                                                     |                             | 1                            | TOTAL                                      | 2         |           |        |     |                |            |              |           |             |                             |                                            |                                             |                        |        |

## Appendix F

# Certificates of Analysis and Laboratory Analytical Data

Excel files are also on attached CD



Table F-1 Avoca Laboratory Analytical Data R2 (2018) - Surface Water

| SDG        | Sample Description              | Date Sampled | Organic Carbon,<br>Total | Ammoniacal<br>Nitrogen as N | рН       | Sulphate | Aluminium<br>(diss.filt) | Antimony<br>(diss.filt) | Arsenic (diss.filt) |
|------------|---------------------------------|--------------|--------------------------|-----------------------------|----------|----------|--------------------------|-------------------------|---------------------|
|            |                                 | Units        | mg/l                     | mg/l                        | pH Units | mg/l     | μg/l                     | μg/l                    | μg/l                |
| 180317-36  | 850 Adit                        | 04/09/2018   | -                        | <0.2                        | 2.93     | 859      | 60200                    | <6                      | 7.2                 |
| 180315-112 | AVOCA BRIDGE                    | 05/09/2018   | 3.1                      | <0.2                        | 6.43     | 6.3      | 212                      | <1                      | <0.5                |
| 180317-36  | Cronebane Inter Adit            | 04/09/2018   | =                        | 0.32                        | 2.98     | 683      | 53500                    | <6                      | 23.4                |
| 180317-36  | Cronebane Shallow Adit          | 04/09/2018   | -                        | 0.529                       | 2.76     | 1370     | 132000                   | <6                      | 78.7                |
| 180317-36  | Deep Adit                       | 04/09/2018   | =                        | <0.2                        | 3.45     | 215      | 15800                    | <6                      | <3                  |
| 180317-36  | Deep Adit Conf                  | 04/09/2018   | =                        | <0.2                        | 3.17     | 563      | 49100                    | <6                      | 4.44                |
|            | Drainage Channel (Tigroney west | 04/09/2018   |                          |                             |          |          |                          |                         |                     |
| 180315-112 | DS DEEP ADIT                    | 05/09/2018   | 4.25                     | <0.2                        | 5.35     | 14.6     | 515                      | <1                      | <0.5                |
| 180315-112 | DS MILLRACE                     | 05/09/2018   | 4.39                     | <0.2                        | 6.27     | 7.6      | 328                      | <1                      | <0.5                |
| 180317-36  | Road Adit                       | 04/09/2018   | -                        | 5.27                        | 4.34     | 1280     | 10500                    | <11                     | 12.4                |
| 180317-36  | Road Adit Conf                  | 04/09/2018   | -                        | 5.16                        | 4.23     | 1250     | 10600                    | <6                      | 10.8                |
| 180315-112 | SITE T1                         | 05/09/2018   | 3.62                     | <0.2                        | 6.51     | 2.9      | 114                      | <1                      | <0.5                |
| 180315-112 | SITE T5                         | 05/09/2018   | <3                       | <0.2                        | 6.32     | 8.6      | 243                      | <1                      | <0.5                |
| 180315-112 | US BALLYGAHAN ADIT              | 05/09/2018   | <3                       | <0.2                        | 6.46     | 5.3      | 186                      | <1                      | <0.5                |
| 180315-112 | US ROAD ADIT                    | 05/09/2018   | 3.15                     | <0.2                        | 6.42     | 6.1      | 247                      | <1                      | <0.5                |
| 180317-36  | US Tigroney West                | 04/09/2018   | -                        | <0.2                        | 3.91     | 154      | 6250                     | <1                      | 1.74                |
| 180315-112 | US WHITES BRIDGE                | 05/09/2018   | 3.89                     | <0.2                        | 6.62     | 2.1      | 110                      | <1                      | <0.5                |
|            | Vale View                       | 05/09/2018   |                          |                             |          |          |                          |                         |                     |
| 180315-112 | WCC MAIN. YARD GS               | 05/09/2018   | 4.11                     | <0.2                        | 5.75     | 22.9     | 337                      | <1                      | 0.602               |
| 180315-112 | WHITES BRIDGE                   | 05/09/2018   | 3.13                     | <0.2                        | 6.59     | <2       | 119                      | <1                      | 0.501               |
| 180315-112 | WHITES BRIDGE GS                | 05/09/2018   | 3.22                     | <0.2                        | 6.43     | 6.6      | 337                      | <1                      | <0.5                |

Table F-1 Avoca Laboratory Analytical Data R2 (2018) - Surface Water

| SDG        | Sample Description              | Date Sampled | Barium (diss.filt) | Cadmium<br>(diss.filt) | Calcium (diss.filt) | Chromium<br>(diss.filt) | Cobalt (diss.filt) | Copper (diss.filt) | Iron (diss.filt) |
|------------|---------------------------------|--------------|--------------------|------------------------|---------------------|-------------------------|--------------------|--------------------|------------------|
|            |                                 | Units        | μg/l               | μg/l                   | mg/l                | μg/l                    | μg/l               | μg/l               | mg/l             |
| 180317-36  | 850 Adit                        | 04/09/2018   | 10                 | 90.8                   | -                   | <6                      | 96.7               | 6050               | 17.2             |
| 180315-112 | AVOCA BRIDGE                    | 05/09/2018   | 6.28               | 0.279                  | 3.9                 | <1                      | <0.5               | 10.3               | 0.201            |
| 180317-36  | Cronebane Inter Adit            | 04/09/2018   | 7.22               | 104                    | -                   | <6                      | 94.6               | 9250               | 61.3             |
| 180317-36  | Cronebane Shallow Adit          | 04/09/2018   | 4.87               | 155                    | -                   | <6                      | 138                | >6240              | 88.5             |
| 180317-36  | Deep Adit                       | 04/09/2018   | 20.3               | 21                     | -                   | <6                      | 15.5               | 790                | 4.56             |
| 180317-36  | Deep Adit Conf                  | 04/09/2018   | 12                 | 60.3                   | -                   | <6                      | 62.7               | 5180               | 10.7             |
|            | Drainage Channel (Tigroney west | 04/09/2018   |                    |                        |                     |                         |                    |                    |                  |
| 180315-112 | DS DEEP ADIT                    | 05/09/2018   | 5.82               | 1.25                   | 2.5                 | <1                      | 1.46               | 76.6               | 0.0659           |
| 180315-112 | DS MILLRACE                     | 05/09/2018   | 5.98               | 0.587                  | 2.5                 | <1                      | 0.653              | 30.1               | 0.096            |
| 180317-36  | Road Adit                       | 04/09/2018   | 16.3               | 7                      | -                   | <11                     | 130                | 298                | 134              |
| 180317-36  | Road Adit Conf                  | 04/09/2018   | 14.6               | 5.85                   | -                   | <6                      | 122                | 267                | 128              |
| 180315-112 | SITE T1                         | 05/09/2018   | 7.79               | 0.15                   | 2.76                | <1                      | <0.5               | 1.22               | 0.0745           |
| 180315-112 | SITE T5                         | 05/09/2018   | 7.71               | 0.296                  | 4.2                 | <1                      | 0.699              | 11.9               | 0.414            |
| 180315-112 | US BALLYGAHAN ADIT              | 05/09/2018   | 6.19               | 0.194                  | 3.94                | <1                      | <0.5               | 8.25               | 0.114            |
| 180315-112 | US ROAD ADIT                    | 05/09/2018   | 6.08               | 0.28                   | 3.99                | <1                      | <0.5               | 14.3               | 0.135            |
| 180317-36  | US Tigroney West                | 04/09/2018   | 12.3               | 6.77                   | -                   | <1                      | 8.71               | 934                | 1.1              |
| 180315-112 | US WHITES BRIDGE                | 05/09/2018   | 6.45               | 0.146                  | 2.7                 | <1                      | <0.5               | 0.734              | 0.0799           |
|            | Vale View                       | 05/09/2018   |                    | ·                      |                     |                         |                    |                    |                  |
| 180315-112 | WCC MAIN. YARD GS               | 05/09/2018   | 6.15               | 0.478                  | 6.72                | <1                      | 2.81               | 17.5               | 2.34             |
| 180315-112 | WHITES BRIDGE                   | 05/09/2018   | 6.24               | 0.152                  | 4.36                | <1                      | <0.5               | 0.625              | 0.13             |
| 180315-112 | WHITES BRIDGE GS                | 05/09/2018   | 7.16               | 0.412                  | 3.88                | <1                      | <0.5               | 17.4               | 0.109            |

Table F-1 Avoca Laboratory Analytical Data R2 (2018) - Surface Water

| SDG        | Sample Description              | Date Sampled | Lead (diss.filt) | Manganese<br>(diss.filt) | Molybdenum<br>(diss.filt) | Nickel (diss.filt) | Vanadium<br>(diss.filt) | Zinc (diss.filt) |
|------------|---------------------------------|--------------|------------------|--------------------------|---------------------------|--------------------|-------------------------|------------------|
|            |                                 | Units        | μg/l             | μg/l                     | μg/l                      | μg/l               | μg/l                    | μg/l             |
| 180317-36  | 850 Adit                        | 04/09/2018   | 904              | 3070                     | <18                       | 36.2               | <6                      | 30000            |
| 180315-112 | AVOCA BRIDGE                    | 05/09/2018   | 4.01             | 43.3                     | <3                        | 0.992              | <1                      | 77               |
| 180317-36  | Cronebane Inter Adit            | 04/09/2018   | 1090             | 2120                     | <18                       | 41.6               | <6                      | 29800            |
| 180317-36  | Cronebane Shallow Adit          | 04/09/2018   | 683              | 3200                     | <18                       | 60                 | <6                      | >31200           |
| 180317-36  | Deep Adit                       | 04/09/2018   | 869              | 872                      | <18                       | 7.52               | <6                      | 7000             |
| 180317-36  | Deep Adit Conf                  | 04/09/2018   | 705              | 2120                     | <18                       | 24.2               | <6                      | 19800            |
|            | Drainage Channel (Tigroney west | 04/09/2018   |                  |                          |                           |                    |                         |                  |
| 180315-112 | DS DEEP ADIT                    | 05/09/2018   | 9.75             | 70.2                     | <3                        | 1.46               | <1                      | 388              |
| 180315-112 | DS MILLRACE                     | 05/09/2018   | 5.68             | 45.6                     | <3                        | 0.983              | <1                      | 175              |
| 180317-36  | Road Adit                       | 04/09/2018   | 240              | 11300                    | <33                       | 57.7               | <11                     | 8890             |
| 180317-36  | Road Adit Conf                  | 04/09/2018   | 233              | 10800                    | <18                       | 50.9               | <6                      | 8050             |
| 180315-112 | SITE T1                         | 05/09/2018   | 4.96             | 29.9                     | <3                        | 1.04               | <1                      | 33.5             |
| 180315-112 | SITE T5                         | 05/09/2018   | 4.34             | 65.1                     | <3                        | 0.998              | <1                      | 98.4             |
| 180315-112 | US BALLYGAHAN ADIT              | 05/09/2018   | 3.35             | 35.5                     | <3                        | 0.795              | <1                      | 52.6             |
| 180315-112 | US ROAD ADIT                    | 05/09/2018   | 3.8              | 42.1                     | <3                        | 0.935              | <1                      | 74.2             |
| 180317-36  | US Tigroney West                | 04/09/2018   | 306              | 653                      | <3                        | 5.12               | <1                      | 2110             |
| 180315-112 | US WHITES BRIDGE                | 05/09/2018   | 3.14             | 28.3                     | <3                        | 0.793              | <1                      | 29.8             |
|            | Vale View                       | 05/09/2018   |                  |                          |                           |                    |                         |                  |
| 180315-112 | WCC MAIN. YARD GS               | 05/09/2018   | 7.18             | 237                      | <3                        | 1.84               | <1                      | 250              |
| 180315-112 | WHITES BRIDGE                   | 05/09/2018   | 3.44             | 32.1                     | <3                        | 0.784              | <1                      | 35.3             |
| 180315-112 | WHITES BRIDGE GS                | 05/09/2018   | 3.71             | 41.1                     | <3                        | 0.798              | <1                      | 121              |

Table F-2 Avoca Laboratory Analytical Data R2 (2018) - Surface Water

| SDG        | Sample Description | Date Sampled | Ammoniacal<br>Nitrogen as N | рН       | Sulphate | Aluminium<br>(diss.filt) | Antimony<br>(diss.filt) | Arsenic (diss.filt) | Barium (diss.filt) |
|------------|--------------------|--------------|-----------------------------|----------|----------|--------------------------|-------------------------|---------------------|--------------------|
|            |                    | Units        | mg/l                        | pH Units | mg/l     | μg/l                     | μg/l                    | μg/l                | μg/l               |
| 180908-181 | GW1/05             | 04/09/2018   | <2                          | 3.76     | 1090     | 60500                    | <6                      | <3                  | 4.31               |
| 180908-179 | GW2/05             | 05/09/2018   | <0.2                        | 3.99     | 857      | 42700                    | <1                      | 0.836               | 1.35               |
| 18349768   | MWDA2              | 04/09/2018   | 0.265                       | 3.57     | 1010     | 28300                    | <6                      | <3                  | <1.2               |
| 18349767   | MWDA1              | 04/09/2018   | 0.434                       | 3.1      | 913      | 70300                    | <6                      | 4.27                | <1.2               |
| 180908-179 | MWET1              | 04/09/2018   | 0.981                       | 3.76     | 1690     | 170000                   | <6                      | 4.19                | 4.32               |
| 180908-179 | MWET2              | 04/09/2018   | 0.254                       | 5.99     | 2060     | <60                      | <6                      | 6.22                | 10.9               |
| 180908-179 | MWPF1              | 04/09/2018   | <0.2                        | 5.39     | 27.6     | 241                      | <1                      | <0.5                | 7.36               |

Table F-2 Avoca Laboratory Analytical Data R2 (2018) - Surface Water

| SDG        | Sample Description | Date Sampled | Cadmium<br>(diss.filt) | Chromium<br>(diss.filt) | Cobalt (diss.filt) | Copper (diss.filt) | Iron (diss.filt) | Lead (diss.filt) | Manganese<br>(diss.filt) |
|------------|--------------------|--------------|------------------------|-------------------------|--------------------|--------------------|------------------|------------------|--------------------------|
|            |                    | Units        | μg/l                   | μg/l                    | μg/l               | μg/l               | mg/l             | μg/l             | μg/l                     |
| 180908-181 | GW1/05             | 04/09/2018   | 22                     | <6                      | 102                | 7160               | 1.78             | 15.9             | 4690                     |
| 180908-179 | GW2/05             | 05/09/2018   | 14.3                   | 1.17                    | 75.4               | 5870               | 0.198            | 0.553            | 3880                     |
| 18349768   | MWDA2              | 04/09/2018   | 79                     | <6                      | 214                | 2370               | 109              | 2.71             | 11600                    |
| 18349767   | MWDA1              | 04/09/2018   | 69.2                   | <6                      | 93                 | 2620               | 19.4             | 48.1             | 4360                     |
| 180908-179 | MWET1              | 04/09/2018   | 30.6                   | 9.59                    | 259                | 10600              | 107              | 87.6             | 9510                     |
| 180908-179 | MWET2              | 04/09/2018   | 1.66                   | <6                      | 108                | <1.8               | 89.3             | <1.2             | 30200                    |
| 180908-179 | MWPF1              | 04/09/2018   | 0.348                  | <1                      | <0.5               | 36.2               | 0.0219           | <0.2             | 19.5                     |

Table F-2 Avoca Laboratory Analytical Data R2 (2018) - Surface Water

| SDG        | Sample Description | Date Sampled | Molybdenum<br>(diss.filt) | Nickel (diss.filt) | Vanadium<br>(diss.filt) | Zinc (diss.filt) |
|------------|--------------------|--------------|---------------------------|--------------------|-------------------------|------------------|
|            |                    | Units        | μg/l                      | μg/l               | μg/l                    | μg/l             |
| 180908-181 | GW1/05             | 04/09/2018   | <18                       | 47.4               | <6                      | 7980             |
| 180908-179 | GW2/05             | 05/09/2018   | 3.99                      | 35.7               | <1                      | 6720             |
| 18349768   | MWDA2              | 04/09/2018   | <18                       | 96.1               | <6                      | <17.6            |
| 18349767   | MWDA1              | 04/09/2018   | <18                       | 43.2               | <6                      | 37700            |
| 180908-179 | MWET1              | 04/09/2018   | <18                       | 123                | <6                      | 11200            |
| 180908-179 | MWET2              | 04/09/2018   | <18                       | 12.8               | <6                      | 4830             |
| 180908-179 | MWPF1              | 04/09/2018   | <3                        | 0.516              | <1                      | 37.8             |

Table F-3 Avoca Laboratory Analytical Data Round 2 (2018) - Field QA/QC

| SDG        | Sample Description | Date Sampled | Aluminium<br>(diss.filt) | Antimony<br>(diss.filt) | Arsenic (diss.filt) | Barium (diss.filt) | Cadmium<br>(diss.filt) | Chromium<br>(diss.filt) |
|------------|--------------------|--------------|--------------------------|-------------------------|---------------------|--------------------|------------------------|-------------------------|
|            |                    | Units        | μg/l                     | μg/l                    | μg/l                | μg/l               | μg/l                   | μg/l                    |
| 180908-179 | AVSR01.11          | 04/09/2018   | 1570                     | 323                     | 584                 | 1930               | 739                    | 429                     |
| 180908-179 | AVDB01.11          | 05/09/2018   | 17.6                     | <1                      | <0.5                | <0.2               | <0.08                  | <1                      |
| 180908-181 | AVGD01.11          | 04/09/2018   | 63600                    | <6                      | <3                  | 4.62               | 22.6                   | <6                      |
| 18349770   | SMDB02.11          | 04/09/2018   | <10                      | <1                      | <0.5                | 0.224              | <0.08                  | <1                      |
| 18349769   | SMSD03.11          | 04/09/2018   | <10                      | <1                      | <0.5                | 37.8               | <0.08                  | <1                      |

Table F-3 Avoca Laboratory Analytical Data Round 2 (2018) - Field QA/QC

| SDG        | Sample Description | Date Sampled | Cobalt (diss.filt) | Copper (diss.filt) | Iron (diss.filt) | Lead (diss.filt) | Manganese<br>(diss.filt) | Molybdenum<br>(diss.filt) |
|------------|--------------------|--------------|--------------------|--------------------|------------------|------------------|--------------------------|---------------------------|
|            |                    | Units        | μg/l               | μg/I               | mg/l             | μg/l             | μg/l                     | μg/l                      |
| 180908-179 | AVSR01.11          | 04/09/2018   | 487                | 437                | 2.49             | 597              | 193                      | 102                       |
| 180908-179 | AVDB01.11          | 05/09/2018   | <0.5               | 1.43               | 0.0435           | 0.344            | 3.32                     | <3                        |
| 180908-181 | AVGD01.11          | 04/09/2018   | 105                | 7360               | 2.22             | 19.7             | 4850                     | <18                       |
| 18349770   | SMDB02.11          | 04/09/2018   | <0.5               | <0.3               | <0.019           | 0.298            | <3                       | <3                        |
| 18349769   | SMSD03.11          | 04/09/2018   | <0.5               | <0.3               | <0.019           | <0.2             | <3                       | <3                        |

Table F-3 Avoca Laboratory Analytical Data Round 2 (2018) - Field QA/QC

| SDG        | Sample Description | Date Sampled | Nickel (diss.filt) | Vanadium<br>(diss.filt) | Zinc (diss.filt) |
|------------|--------------------|--------------|--------------------|-------------------------|------------------|
|            |                    | Units        | μg/l               | μg/l                    | μg/l             |
| 180908-179 | AVSR01.11          | 04/09/2018   | 446                | 1360                    | 1800             |
| 180908-179 | AVDB01.11          | 05/09/2018   | <0.4               | <1                      | 2.45             |
| 180908-181 | AVGD01.11          | 04/09/2018   | 48.6               | <6                      | 8210             |
| 18349770   | SMDB02.11          | 04/09/2018   | <0.4               | <1                      | 2.17             |
| 18349769   | SMSD03.11          | 04/09/2018   | <0.4               | <1                      | <1               |



Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US

Tel: (01244) 528700 Fax: (01244) 528701

email: hawardencustomerservices@alsglobal.com Website: www.alsenvironmental.co.uk

CDM Smith 15 Wentworth Elbana Villas Dublin Dublin 2 D02 WK10

Attention: Laura Foley

#### **CERTIFICATE OF ANALYSIS**

Date:13 September 2018Customer:D CDMSMITH DUB

 Sample Delivery Group (SDG):
 180906-116

 Your Reference:
 118174

 Location:
 Avoca

 Report No:
 472332

We received 12 samples on Thursday September 06, 2018 and 12 of these samples were scheduled for analysis which was completed on Thursday September 13, 2018. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden (Method codes TM) or ALS Life Sciences Ltd Aberdeen (Method codes S).

Approved By:

Sonia McWhan
Operations Manager





Validated



ALS

 SDG:
 180906-116
 Client Reference:
 118174
 Report Number:
 472332

 Location:
 Avoca
 Order Number:
 118174
 Superseded Report:

### **Received Sample Overview**

| Lab Sample No(s) | Customer Sample Ref.   | AGS Ref. | Depth (m) | Sampled Date |
|------------------|------------------------|----------|-----------|--------------|
| 18273274         | 850 ADIT               |          |           | 04/09/2018   |
| 18273277         | AVSR02.11              |          |           | 04/09/2018   |
| 18273276         | CRONEBANE INTER ADIT   |          |           | 04/09/2018   |
| 18273275         | CRONEBANE SHALLOW ADIT |          |           | 04/09/2018   |
| 18273272         | DEEP ADIT              |          |           | 04/09/2018   |
| 18273273         | DEEP ADIT CONF.        |          |           | 04/09/2018   |
| 18273270         | ROAD ADIT              |          |           | 04/09/2018   |
| 18273271         | ROAD ADIT CONF.        |          |           | 04/09/2018   |
| 18273281         | SMSDB01.11             |          |           | 30/08/2018   |
| 18273280         | SMVDB01.11             |          |           | 04/09/2018   |
| 18273278         | WB01.11                |          |           | 04/09/2018   |
| 18273279         | WB02.11                |          |           | 04/09/2018   |

Maximum Sample/Coolbox Temperature (°C):

ISO5667-3 Water quality - Sampling - Part3 -

During Transportation samples shall be stored in a cooling device capable of maintaining a temperature of (5±3)°C.

13.2

ALS have data which show that a cool box with 4 frozen icepacks is capable of maintaining pre-chilled samples at a temperature of  $(5\pm3)^{\circ}$ C for a period of up to 24hrs.

Only received samples which have had analysis scheduled will be shown on the following pages.

Validated

#### **CERTIFICATE OF ANALYSIS**

SDG: 118174 180906-116 Client Reference: Report Number: 472332 Location: Avoca Order Number: 118174 Superseded Report: Results Legend 18273270 18273274 18273277 18273276 18273275 18273272 18273273 Lab Sample No(s) X Test No Determination Possible CRONEBANE SHALLOW ADIT DEEP ADIT CONF. CRONEBANE INTER ADIT ROAD ADIT AVSR02.11 DEEP ADIT Customer 850 ADIT Sample Reference Sample Types -S - Soil/Solid UNS - Unspecified Solid GW - Ground Water **AGS Reference** SW - Surface Water LE - Land Leachate PL - Prepared Leachate PR - Process Water SA - Saline Water Depth (m) TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage RE - Recreational Water HNO3 Filtered (ALE204) H2SO4 (ALE244) HNO3 Filtered (ALE204) H2SO4 (ALE244) HNO3 (ALE204)
Unspecified
HNO3 Filtered
(ALE204) H2SO4 (ALE244) H2SO4 (ALE244) H2SO4 (ALE244) H2SO4 (ALE244) HNO3 Filtered (ALE204) HNO3 Filtered (ALE204) 500ml Plastic (ALE208) HNO3 Filtered (ALE204) 500ml Plastic (ALE208) DW - Drinking Water Non-regulatory 500ml Plastic (ALE208) 500ml Plastic (ALE208) 500ml Plastic (ALE208) 500ml Plastic (ALE208) UNL - Unspecified Liquid SL - Sludge Container G - Gas OTH - Other WS WS WS WS WS WS Sample Type WS Ammoniacal Nitrogen All NDPs: 0 Tests: 7 X Χ X X X X Anions by Kone (w) All NDPs: 0 Tests: 7 X X X X X X Dissolved Metals by ICP-MS All NDPs: 0 Tests: 12 Χ Χ Х X Х Х X pH Value All NDPs: 0 Tests: 7 X X X X X Χ

| X |   | X |          | v<br>V | (ALE208)        |                 |          |
|---|---|---|----------|--------|-----------------|-----------------|----------|
|   |   |   | <u> </u> | 2      |                 |                 |          |
|   |   |   | X        | WS     | H2SO4 (ALE244)  |                 |          |
|   | ) |   |          |        | (ALE204)        |                 |          |
|   | ( |   |          | WS     | HNO3 Filtered   | ROAD ADIT CONF. | 18273271 |
|   | ) |   |          |        | (ALE204)        |                 |          |
|   | ( |   |          | WS     | HNO3 Unfiltered | SMSDB01.11      | 18273281 |
|   | ) |   |          |        | (ALE204)        |                 |          |
|   | ( |   |          | WS     | ď               | SMVDB01.11      | 18273280 |
|   | ) |   |          |        | (ALE204)        |                 |          |
|   | ( |   |          | WS     | HNO3 Filtered   | WB01.11         | 18273278 |
|   | ) |   |          |        | (ALE204)        |                 |          |
|   | ( |   |          | WS     | HNO3 Filtered   | WB02.11         | 18273279 |

#### **CERTIFICATE OF ANALYSIS**



SDG:180906-116Client Reference:118174Report Number:472332Location:AvocaOrder Number:118174Superseded Report:

| Results Legend                                                                                                                                                    |                | Customer Sample Ref.                                    | 850 ADIT                             | AVSR02.11                            | CRONEBANE INTER                      | CRONEBANE SHALL                      | DEEP ADIT                            | DEEP ADIT CONF.                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| # ISO17025 accredited.  M mCERTS accredited.                                                                                                                      |                |                                                         | 300 ND11                             | 7.70102.71                           | ADIT                                 | OW ADIT                              | SEE NOT                              | SEE, ADIT CON .                      |
| aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. Subcontracted test. We recovery of the surrogate standa | ard to         | Depth (m)<br>Sample Type<br>Date Sampled<br>Sample Time | Surface Water (SW)<br>04/09/2018     |
| check the efficiency of the method results of individual compounds w samples aren't corrected for the re (F) Trigger breach confirmed                             | . The<br>ithin | Date Received<br>SDG Ref<br>Lab Sample No.(s)           | 06/09/2018<br>180906-116<br>18273274 | 06/09/2018<br>180906-116<br>18273277 | 06/09/2018<br>180906-116<br>18273276 | 06/09/2018<br>180906-116<br>18273275 | 06/09/2018<br>180906-116<br>18273272 | 06/09/2018<br>180906-116<br>18273273 |
| 1-5&+§@ Sample deviation (see appendix)  Component                                                                                                                | LOD/Units      | AGS Reference Method                                    |                                      |                                      |                                      |                                      |                                      |                                      |
| Ammoniacal Nitrogen as N                                                                                                                                          | <0.2 mg/l      | TM099                                                   | 0.22<br>#                            |                                      | 0.387<br>#                           | 0.696<br>#                           | 0.325<br>#                           | 0.291<br>#                           |
| Aluminium (diss.filt)                                                                                                                                             | <10 µg/l       | TM152                                                   | 47600<br>#                           | 1420<br>#                            | 31000<br>#                           | 305000<br>#                          | 62300<br>#                           | 60900<br>#                           |
| Antimony (diss.filt)                                                                                                                                              | <1 µg/l        | TM152                                                   | <6                                   | 341                                  | <6                                   | <60                                  | <6                                   | <6                                   |
| Arsenic (diss.filt)                                                                                                                                               | <0.5 µg/l      | TM152                                                   | 9.81<br>#                            | 612<br>#                             | 13.6<br>#                            | 52.3<br>#                            | 13.7<br>#                            | 13.1<br>#                            |
| Barium (diss.filt)                                                                                                                                                | <0.2 µg/l      | TM152                                                   | 10.4<br>#                            | 2130<br>#                            | 10.2<br>#                            | 13.1<br>#                            | 8.7<br>#                             | 8.15<br>#                            |
| Cadmium (diss.filt)                                                                                                                                               | <0.08 µg/      | I TM152                                                 | 86.5<br>#                            | 722<br>#                             | 89.4<br>#                            | 438<br>#                             | 66.1<br>#                            | 70.1<br>#                            |
| Chromium (diss.filt)                                                                                                                                              | <1 µg/l        | TM152                                                   | <6<br>#                              | 407<br>#                             | <6<br>#                              | <60<br>#                             | <6<br>#                              | <6<br>#                              |
| Cobalt (diss.filt)                                                                                                                                                | <0.5 µg/l      | TM152                                                   | 62.5<br>#                            | 466<br>#                             | 58<br>#                              | 337<br>#                             | 79.3<br>#                            | 75.2<br>#                            |
| Copper (diss.filt)                                                                                                                                                | <0.3 µg/l      | TM152                                                   | 2790<br>#                            | 409<br>#                             | 481<br>#                             | 4050<br>#                            | 895<br>#                             | 1090<br>#                            |
| Lead (diss.filt)                                                                                                                                                  | <0.2 µg/l      | TM152                                                   | 845<br>#                             | 583<br>#                             | 1110<br>#                            | 881<br>#                             | 1050<br>#                            | 1020<br>#                            |
| Manganese (diss.filt)                                                                                                                                             | <3 µg/l        | TM152                                                   | 2370<br>#                            | 205<br>#                             | 1990<br>#                            | 10200<br>#                           | 2990<br>#                            | 2910<br>#                            |
| Molybdenum (diss.filt)                                                                                                                                            | <3 µg/l        | TM152                                                   | <18<br>#                             | 96.3<br>#                            | <18<br>#                             | <180<br>#                            | <18<br>#                             | <18<br>#                             |
| Nickel (diss.filt)                                                                                                                                                | <0.4 µg/l      | TM152                                                   | 33.2<br>#                            | 423<br>#                             | 34.4<br>#                            | 170<br>#                             | 29.3<br>#                            | 29.1<br>#                            |
| Vanadium (diss.filt)                                                                                                                                              | <1 µg/l        | TM152                                                   | <6<br>#                              | 1410<br>#                            | <6<br>#                              | <60<br>#                             | <6<br>#                              | <6<br>#                              |
| Zinc (diss.filt)                                                                                                                                                  | <1 µg/l        | TM152                                                   | 23100<br>#                           | 1700<br>#                            | 23900<br>#                           | 126000<br>#                          | 40300<br>#                           | 38200<br>#                           |
| Calcium (Dis.Filt)                                                                                                                                                | <0.2 mg/l      | TM152                                                   |                                      | 0.326<br>#                           |                                      |                                      |                                      |                                      |
| Iron (Dis.Filt)                                                                                                                                                   | <0.019 mg      | /I TM152                                                | 20.8<br>#                            | 2.47<br>#                            | 0.239<br>#                           | 190<br>#                             | 61.8<br>#                            | 53.5<br>#                            |
| Sulphate                                                                                                                                                          | <2 mg/l        | TM184                                                   | 675<br>#                             |                                      | 615<br>#                             | 3580<br>#                            | 987<br>#                             | 956<br>#                             |
| pH                                                                                                                                                                | <1 pH Unit     | s TM256                                                 | 3.2                                  |                                      | 3.18 #                               | 2.91<br>#                            | 3.3 #                                | 3.3                                  |
|                                                                                                                                                                   |                |                                                         |                                      |                                      |                                      |                                      |                                      |                                      |
|                                                                                                                                                                   |                |                                                         |                                      |                                      |                                      |                                      |                                      |                                      |
|                                                                                                                                                                   |                |                                                         |                                      |                                      |                                      |                                      |                                      |                                      |
|                                                                                                                                                                   |                |                                                         |                                      |                                      |                                      |                                      |                                      |                                      |
|                                                                                                                                                                   |                |                                                         |                                      |                                      |                                      |                                      |                                      |                                      |
|                                                                                                                                                                   |                |                                                         |                                      |                                      |                                      |                                      |                                      |                                      |
|                                                                                                                                                                   |                |                                                         |                                      |                                      |                                      |                                      |                                      |                                      |
|                                                                                                                                                                   |                |                                                         |                                      |                                      |                                      |                                      |                                      |                                      |
|                                                                                                                                                                   |                |                                                         |                                      |                                      |                                      |                                      |                                      |                                      |
|                                                                                                                                                                   |                |                                                         |                                      |                                      |                                      |                                      |                                      |                                      |
|                                                                                                                                                                   |                |                                                         |                                      |                                      |                                      |                                      |                                      |                                      |

#### **CERTIFICATE OF ANALYSIS**



SDG:180906-116Client Reference:118174Report Number:472332Location:AvocaOrder Number:118174Superseded Report:

| Results Legend                                                                                            |          | Customer Sample Ref.         | ROAD ADIT              | ROAD ADIT CONF.        | SMSDB01.11             | SMVDB01.11             | WB01.11                | WB02.11                |
|-----------------------------------------------------------------------------------------------------------|----------|------------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| # ISO17025 accredited. M mCERTS accredited.                                                               |          | ·                            |                        |                        |                        |                        |                        |                        |
| aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. |          | Depth (m)<br>Sample Type     | Surface Water (SW)     |
| * Subcontracted test.     ** % recovery of the surrogate standards.                                       | ard to   | Date Sampled<br>Sample Time  | 04/09/2018             | 04/09/2018             | 30/08/2018             | 04/09/2018             | 04/09/2018             | 04/09/2018             |
| check the efficiency of the method results of individual compounds w                                      | . The    | Date Received                | 06/09/2018             | 06/09/2018             | 06/09/2018             | 06/09/2018             | 06/09/2018             | 06/09/2018             |
| samples aren't corrected for the re (F) Trigger breach confirmed                                          |          | SDG Ref<br>Lab Sample No.(s) | 180906-116<br>18273270 | 180906-116<br>18273271 | 180906-116<br>18273281 | 180906-116<br>18273280 | 180906-116<br>18273278 | 180906-116<br>18273279 |
| 1-5&+\$@ Sample deviation (see appendix)  Component                                                       | LOD/Uni  | AGS Reference                |                        |                        |                        |                        |                        |                        |
| Ammoniacal Nitrogen as N                                                                                  | <0.2 mg  |                              | 7.22                   | 7.29<br>#              |                        |                        |                        |                        |
| Aluminium (diss.filt)                                                                                     | <10 µg   | /I TM152                     | 8680                   | 8600                   | <10                    | <10                    | <10                    | <10                    |
| Antimony (diss.filt)                                                                                      | <1 µg/   | I TM152                      | #<br><6                | #<br><6                | <1                     | #<br><1                | *1                     | *1                     |
| Arsenic (diss.filt)                                                                                       | <0.5 µg  | /l TM152                     | 16.7                   | 16.6                   | 0.613                  | <0.5                   | <0.5                   | <0.5                   |
| Barium (diss.filt)                                                                                        | <0.2 µg  | /l TM152                     | 16.5                   | 15.7<br>#              | <0.2                   | <0.2                   | <0.2                   | <0.2                   |
| Cadmium (diss.filt)                                                                                       | <0.08 µ  | g/l TM152                    | 11.5                   | 11.1 #                 | <0.08                  | <0.08                  | <0.08                  | <0.08                  |
| Chromium (diss.filt)                                                                                      | <1 µg/   | I TM152                      | <6<br>#                | <6<br>#                | <1 #                   | <1 #                   | <1 #                   | <1 #                   |
| Cobalt (diss.filt)                                                                                        | <0.5 µg  | /l TM152                     | 52.8<br>#              | 51.3                   | <0.5<br>#              | <0.5<br>#              | <0.5<br>#              | <0.5                   |
| Copper (diss.filt)                                                                                        | <0.3 µg  | /l TM152                     | 245 #                  | 241<br>#               | <0.3                   | <0.3                   | <0.3                   | <0.3                   |
| Lead (diss.filt)                                                                                          | <0.2 µg  | /l TM152                     | 305<br>#               | 301<br>#               | <0.2                   | <0.2                   | <0.2                   | <0.2                   |
| Manganese (diss.filt)                                                                                     | <3 µg/   | I TM152                      | 4140<br>#              | 4140<br>#              | <3 #                   | <3 #                   | <3 #                   | <3 #                   |
| Molybdenum (diss.filt)                                                                                    | <3 µg/   | I TM152                      | <18<br>#               | <18<br>#               | <3<br>#                | <3<br>#                | <3<br>#                | 9.35<br>#              |
| Nickel (diss.filt)                                                                                        | <0.4 µg  | /l TM152                     | 24.5<br>#              | 24.4<br>#              | <0.4<br>#              | <0.4<br>#              | <0.4<br>#              | <0.4<br>#              |
| Vanadium (diss.filt)                                                                                      | <1 µg/   | I TM152                      | <6<br>#                | <6<br>#                | <1<br>#                | <1<br>#                | <1<br>#                | <1<br>#                |
| Zinc (diss.filt)                                                                                          | <1 µg/   |                              | 5580<br>#              | 5540<br>#              | <1<br>#                | <1<br>#                | <1<br>#                | 1.03<br>#              |
| Calcium (Dis.Filt)                                                                                        | <0.2 mg  |                              |                        |                        | <0.2<br>#              | <0.2<br>#              | <0.2<br>#              | <0.2                   |
| Iron (Dis.Filt)                                                                                           | <0.019 m | Ĭ I                          | 0.159<br>#             | 30.6<br>#              | <0.019<br>#            | 0.0715<br>#            | 0.0309<br>#            | 0.0194<br>#            |
| Sulphate                                                                                                  | <2 mg/   |                              | 642<br>#               | 645<br>#               |                        |                        |                        |                        |
| pH                                                                                                        | <1 pH Ur | nits TM256                   | 3.94                   | 3.86                   |                        |                        |                        |                        |
|                                                                                                           |          |                              |                        |                        |                        |                        |                        |                        |
|                                                                                                           |          |                              |                        |                        |                        |                        |                        |                        |
|                                                                                                           |          |                              |                        |                        |                        |                        |                        |                        |
|                                                                                                           |          |                              |                        |                        |                        |                        |                        |                        |
|                                                                                                           |          |                              |                        |                        |                        |                        |                        |                        |
|                                                                                                           |          |                              |                        |                        |                        |                        |                        |                        |
|                                                                                                           |          |                              |                        |                        |                        |                        |                        |                        |
|                                                                                                           |          |                              |                        |                        |                        |                        |                        |                        |
|                                                                                                           |          |                              |                        |                        |                        |                        |                        |                        |
|                                                                                                           |          |                              |                        |                        |                        |                        |                        |                        |
|                                                                                                           |          |                              |                        |                        |                        |                        |                        |                        |
|                                                                                                           |          |                              |                        |                        |                        |                        |                        |                        |
|                                                                                                           |          |                              |                        |                        |                        |                        |                        |                        |



## **CERTIFICATE OF ANALYSIS**

 SDG:
 180906-116
 Client Reference:
 118174
 Report Number:
 472332

 Location:
 Avoca
 Order Number:
 118174
 Superseded Report:

## **Table of Results - Appendix**

| Method No | Reference                                                                                                                                                         | Description                                                                                    |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| TM099     | BS 2690: Part 7:1968 / BS 6068: Part2.11:1984                                                                                                                     | Determination of Ammonium in Water Samples using the Kone Analyser                             |
| TM152     | Method 3125B, AWWA/APHA, 20th Ed., 1999                                                                                                                           | Analysis of Aqueous Samples by ICP-MS                                                          |
| TM184     | EPA Methods 325.1 & 325.2,                                                                                                                                        | The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric<br>Analysers |
| TM256     | The measurement of Electrical Conductivity and the<br>Laboratory determination of pH Value of Natural, Treated<br>and Wastewaters. HMSO, 1978. ISBN 011 751428 4. | Determination of pH in Water and Leachate using the GLpH pH Meter                              |

NA = not applicable.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden (Method codes TM) or ALS Life Sciences Ltd Aberdeen (Method codes S).

## **CERTIFICATE OF ANALYSIS**



 SDG:
 180906-116
 Client Reference:
 118174
 Report Number:
 472332

 Location:
 Avoca
 Order Number:
 118174
 Superseded Report:

**Test Completion Dates** 

|                            | rest completion bates |               |                         |                            |               |                 |               |                 |               |               |
|----------------------------|-----------------------|---------------|-------------------------|----------------------------|---------------|-----------------|---------------|-----------------|---------------|---------------|
| Lab Sample No(s)           | 18273274              | 18273277      | 18273276                | 18273275                   | 18273272      | 18273273        | 18273270      | 18273271        | 18273281      | 18273280      |
| Customer Sample Ref.       | 850 ADIT              | AVSR02.11     | CRONEBANE INTER<br>ADIT | CRONEBANE SHALL<br>OW ADIT | DEEP ADIT     | DEEP ADIT CONF. | ROAD ADIT     | ROAD ADIT CONF. | SMSDB01.11    | SMVDB01.11    |
| AGS Ref.                   |                       |               |                         |                            |               |                 |               |                 |               |               |
| Depth                      |                       |               |                         |                            |               |                 |               |                 |               |               |
| Туре                       | Surface Water         | Surface Water | Surface Water           | Surface Water              | Surface Water | Surface Water   | Surface Water | Surface Water   | Surface Water | Surface Water |
| Ammoniacal Nitrogen        | 12-Sep-2018           |               | 12-Sep-2018             | 12-Sep-2018                | 12-Sep-2018   | 12-Sep-2018     | 12-Sep-2018   | 12-Sep-2018     |               |               |
| Anions by Kone (w)         | 08-Sep-2018           |               | 08-Sep-2018             | 08-Sep-2018                | 08-Sep-2018   | 08-Sep-2018     | 08-Sep-2018   | 08-Sep-2018     |               |               |
| Dissolved Metals by ICP-MS | 11-Sep-2018           | 11-Sep-2018   | 11-Sep-2018             | 13-Sep-2018                | 11-Sep-2018   | 11-Sep-2018     | 11-Sep-2018   | 11-Sep-2018     | 11-Sep-2018   | 11-Sep-2018   |
| pH Value                   | 12-Sep-2018           |               | 12-Sep-2018             | 12-Sep-2018                | 12-Sep-2018   | 13-Sep-2018     | 13-Sep-2018   | 12-Sep-2018     |               |               |

| Lab Sample No(s)           | 18273278      | 18273279      |
|----------------------------|---------------|---------------|
| Customer Sample Ref.       | WB01.11       | WB02.11       |
|                            |               |               |
| AGS Ref.                   |               |               |
| Depth                      |               |               |
| Туре                       | Surface Water | Surface Water |
| Dissolved Metals by ICP-MS | 11-Sep-2018   | 11-Sep-2018   |



 SDG:
 180906-116

 Location:
 Avoca

Client Reference: Order Number: 118174 118174 Report Number: Superseded Report: 472332

## **ASSOCIATED AQC DATA**

## Ammoniacal Nitrogen

| Component                | Method Code | QC 1815                       | QC 1831                        |
|--------------------------|-------------|-------------------------------|--------------------------------|
| Ammoniacal Nitrogen as N | TM099       | <b>99.6</b><br>95.98 : 104.95 | <b>100.4</b><br>95.98 : 104.95 |

## Anions by Kone (w)

| Component                | Method Code | QC 1815        |
|--------------------------|-------------|----------------|
| Chloride                 | TM184       |                |
|                          |             | 92.93 : 115.43 |
| Phosphate (Ortho as PO4) | TM184       |                |
|                          |             | 96.40 : 108.40 |
| Sulphate (soluble)       | TM184       | 104.0          |
|                          |             | 90.53 : 113.03 |
| TON as NO3               | TM184       |                |
|                          |             | 96.26 : 111.21 |

## Dissolved Metals by ICP-MS

| Component | Method Code | QC 1859                         | QC 1895                         | QC 1857                         |
|-----------|-------------|---------------------------------|---------------------------------|---------------------------------|
| Aluminium | TM152       | <b>98.0</b> 90.09 : 112.69      | <b>95.0</b><br>90.09 : 112.69   | <b>102.67</b><br>94.19 : 114.31 |
| Antimony  | TM152       | <b>110.67</b><br>81.00 : 119.70 | <b>113.17</b><br>81.00 : 119.70 | <b>103.5</b><br>79.80 : 122.00  |
| Arsenic   | TM152       | <b>101.67</b> 90.67 : 112.97    | <b>101.67</b><br>90.67 : 112.97 | <b>106.5</b><br>90.42 : 111.32  |
| Barium    | TM152       | <b>103.83</b><br>84.74 : 117.25 | <b>106.33</b><br>84.74 : 117.25 | <b>105.0</b><br>90.79 : 113.16  |
| Beryllium | TM152       | <b>99.0</b><br>88.27 : 113.27   | <b>97.83</b><br>88.27 : 113.27  | <b>105.0</b><br>93.25 : 120.04  |
| Bismuth   | TM152       | <b>100.33</b><br>86.72 : 115.61 | <b>104.5</b><br>86.72 : 115.61  | <b>102.17</b><br>94.65 : 117.05 |
| Borate    | TM152       |                                 |                                 | <b>103.7</b><br>88.00 : 112.00  |
| Boron     | TM152       | <b>96.0</b><br>82.81 : 116.65   | <b>94.67</b><br>82.81 : 116.65  | <b>104.0</b><br>86.68 : 117.67  |
| Cadmium   | TM152       | <b>101.67</b> 90.28 : 114.48    | <b>103.0</b><br>90.28 : 114.48  | <b>103.33</b><br>94.60 : 112.40 |
| Calcium   | TM152       |                                 |                                 | <b>100.8</b><br>88.64 : 126.35  |
| Chromium  | TM152       | <b>97.67</b><br>89.50 : 108.80  | <b>98.0</b><br>89.50 : 108.80   | <b>102.0</b><br>93.28 : 110.91  |
| Cobalt    | TM152       | <b>97.67</b><br>89.66 : 112.39  | <b>97.33</b><br>89.66 : 112.39  | <b>101.67</b><br>84.39 : 114.26 |
| Copper    | TM152       | <b>98.33</b><br>88.45 : 117.93  | <b>98.17</b><br>88.45 : 117.93  | <b>103.83</b><br>88.86 : 118.72 |
| Iron      | TM152       |                                 |                                 | <b>102.67</b><br>92.00 : 113.00 |
| Lead      | TM152       | <b>99.17</b><br>89.25 : 115.12  | <b>101.67</b><br>89.25 : 115.12 | <b>100.5</b><br>89.25 : 115.12  |

## **CERTIFICATE OF ANALYSIS**



 SDG:
 180906-116
 Client Reference:
 118174
 Report Number:
 472332

 Location:
 Avoca
 Order Number:
 118174
 Superseded Report:

## Dissolved Metals by ICP-MS

|            |       | QC 1859                         | QC 1895                         | QC 1857                         |
|------------|-------|---------------------------------|---------------------------------|---------------------------------|
| Lithium    | TM152 | <b>97.67</b><br>88.50 : 116.05  | <b>97.5</b><br>88.50 : 116.05   | <b>103.17</b><br>89.26 : 119.04 |
| Magnesium  | TM152 |                                 |                                 | <b>100.0</b><br>86.35 : 113.36  |
| Manganese  | TM152 | <b>97.67</b><br>91.63 : 112.33  | <b>95.0</b><br>91.63 : 112.33   | <b>102.83</b><br>94.24 : 112.74 |
| Molybdenum | TM152 | <b>97.5</b><br>86.94 : 106.49   | <b>98.67</b><br>86.94 : 106.49  | <b>100.83</b><br>87.00 : 108.89 |
| Nickel     | TM152 | <b>98.83</b><br>89.60 : 117.38  | <b>98.67</b><br>89.60 : 117.38  | <b>103.17</b><br>92.11 : 110.56 |
| Niobium    | TM152 | 96.38 : 128.85                  | 96.38 : 128.85                  |                                 |
| Phosphorus | TM152 | <b>99.0</b><br>90.43 : 111.75   | <b>97.67</b><br>90.43 : 111.75  | <b>101.33</b><br>90.52 : 115.47 |
| Potassium  | TM152 |                                 |                                 | <b>99.73</b><br>90.23 : 109.87  |
| Selenium   | TM152 | <b>103.33</b><br>88.22 : 113.50 | <b>103.67</b><br>88.22 : 113.50 | <b>104.83</b><br>88.44 : 113.86 |
| Silver     | TM152 | <b>98.0</b> 91.29 : 113.29      | <b>99.17</b><br>91.29 : 113.29  | <b>102.5</b><br>87.04 : 107.38  |
| Sodium     | TM152 |                                 |                                 | <b>99.2</b><br>92.68 : 108.68   |
| Strontium  | TM152 | <b>99.0</b><br>91.27 : 106.32   | <b>100.33</b><br>91.27 : 106.32 | <b>102.33</b><br>90.72 : 114.82 |
| Tellurium  | TM152 | <b>96.5</b><br>81.16 : 111.23   | <b>97.67</b><br>81.16 : 111.23  | <b>99.67</b><br>90.72 : 112.62  |
| Thallium   | TM152 | <b>88.83</b><br>81.70 : 117.09  | <b>86.5</b><br>81.70 : 117.09   | <b>103.0</b><br>86.08 : 122.48  |
| Tin        | TM152 |                                 |                                 | <b>103.67</b> 91.00 : 109.00    |
| Titanium   | TM152 | <b>101.67</b><br>89.62 : 110.62 | <b>97.33</b><br>89.62 : 110.62  | <b>103.5</b><br>92.82 : 118.92  |
| Tungsten   | TM152 | <b>99.17</b><br>88.98 : 114.68  | <b>104.33</b><br>88.98 : 114.68 | <b>100.67</b><br>78.12 : 132.82 |
| Uranium    | TM152 | <b>99.0</b><br>92.30 : 116.90   | <b>104.67</b><br>92.30 : 116.90 | <b>103.17</b><br>90.58 : 113.28 |
| Vanadium   | TM152 | <b>101.17</b><br>88.22 : 118.55 | <b>102.17</b><br>88.22 : 118.55 | <b>101.0</b><br>88.43 : 114.30  |
| Zinc       | TM152 | <b>99.67</b><br>89.30 : 115.44  | <b>99.33</b><br>89.30 : 115.44  | <b>106.67</b><br>86.52 : 115.27 |
|            |       |                                 |                                 |                                 |

## pH Value

| Component | Method Code | QC 1812                         | QC 1861                         |
|-----------|-------------|---------------------------------|---------------------------------|
| рН        | TM256       | <b>101.35</b><br>99.20 : 102.14 | <b>100.94</b><br>99.19 : 102.43 |

### **CERTIFICATE OF ANALYSIS**



 SDG:
 180906-116
 Client Reference:
 118174
 Report Number:
 472332

 Location:
 Avoca
 Order Number:
 118174
 Superseded Report:

The above information details the reference name of the analytical quality control sample (AQC) that has been run with the samples contained in this report for the different methods of analysis.

The figure detailed is the percentage recovery result for the AQC.

The subscript numbers below are the percentage recovery lower control limit (LCL) and the upper control limit (UCL). The percentage recovery result for the AQC should be between these limits to be statistically in control.



180906-116 472332 SDG: 118174 Client Reference: Report Number: Superseded Report: 118174 Location: Avoca Order Number:

# Appendix

## General

- 1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except 21. For the BSEN 12457-3 two batch process to allow the cumulative release to be for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.
- 2. Samples will be run in duplicate upon request, but an additional charge may be incurred.
- 3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.
- 4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised
- 6. When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.
- 7. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.
- 8. If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.
- 9. NDP No determination possible due to insufficient/unsuitable sample.
- 10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals - total metals must be requested separately
- 11. Results relate only to the items tested.
- 12. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected
- 13. Surrogate recoveries Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect
- 14. Product analyses Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors
- 15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).
- 16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 15).
- Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- 19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.
- 20. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.

- calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
- 22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.
- 23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised
- 24. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

#### Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

| 1 | Container with Headspace provided for volatiles analysis       |
|---|----------------------------------------------------------------|
| 2 | Incorrect container received                                   |
| 3 | Deviation from method                                          |
| 4 | Holding time exceeded before sample received                   |
| 5 | Samples exceeded holding time before presevation was performed |
| § | Sampled on date not provided                                   |
| • | Sample holding time exceeded in laboratory                     |
| @ | Sample holding time exceeded due to sampled on date            |
| & | Sample Holding Time exceeded - Late arrival of instructions.   |

#### Asbestos

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

| Asbe stos Type            | Common Name    |  |
|---------------------------|----------------|--|
| Chrysof le                | White Asbesbs  |  |
| Amosite                   | Brown Asbestos |  |
| Cro d dolite              | Blue Asbe stos |  |
| Fibrous Act nolite        | -              |  |
| Fib to us Anthop hyll ite | -              |  |
| Fibrous Tremolite         | -              |  |

#### Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.



Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside

> Tel: (01244) 528700 Fax: (01244) 528701

CH5 3US

email: hawardencustomerservices@alsglobal.com Website: www.alsenvironmental.co.uk

CDM Smith 15 Wentworth Elbana Villas Dublin Dublin 2 D02 WK10

Attention: Laura Foley

## **CERTIFICATE OF ANALYSIS**

Date:17 October 2018Customer:D\_CDMSMITH\_DUB

Sample Delivery Group (SDG):180907-101Your Reference:118174Location:AvocaReport No:477149

This report has been revised and directly supersedes 472045 in its entirety.

We received 14 samples on Friday September 07, 2018 and 14 of these samples were scheduled for analysis which was completed on Wednesday September 12, 2018. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden (Method codes TM) or ALS Life Sciences Ltd Aberdeen (Method codes S).

Approved By:

Sonia McWhan
Operations Manager











 SDG:
 180907-101
 Client Reference:
 118174
 Report Number:
 477149

 Location:
 Avoca
 Order Number:
 118174
 Superseded Report:
 472045

## **Received Sample Overview**

| Lab Sample No(s) | Customer Sample Ref. | AGS Ref. | Depth (m) | Sampled Date |
|------------------|----------------------|----------|-----------|--------------|
| 18282259         | AVDB02.11            |          |           | 05/09/2018   |
| 18282246         | AVOCA Bridge         |          |           | 05/09/2018   |
| 18282257         | AVSD01.11            |          |           | 05/09/2018   |
| 18282258         | AVSD02.11            |          |           | 05/09/2018   |
| 18282253         | DS Deep Adit         |          |           | 05/09/2018   |
| 18282254         | DS Mill Race         |          |           | 05/09/2018   |
| 18282256         | T1                   |          |           | 05/09/2018   |
| 18282247         | T5                   |          |           | 05/09/2018   |
| 18282250         | US Ballygahan Adit   |          |           | 05/09/2018   |
| 18282249         | US of Road Adit      |          |           | 05/09/2018   |
| 18282255         | US Whites Bridge     |          |           | 05/09/2018   |
| 18282248         | WCC Main Yard        |          |           | 05/09/2018   |
| 18282251         | Whites Bridge        |          |           | 05/09/2018   |
| 18282252         | Whites Bridge GS     |          |           | 05/09/2018   |

Maximum Sample/Coolbox Temperature (°C):

ISO5667-3 Water quality - Sampling - Part3 -

During Transportation samples shall be stored in a cooling device capable of maintaining a temperature of  $(5\pm3)^{\circ}C$ .

12

ALS have data which show that a cool box with 4 frozen icepacks is capable of maintaining pre-chilled samples at a temperature of (5±3) C for a period of up to 24hrs.

Only received samples which have had analysis scheduled will be shown on the following pages.

### **CERTIFICATE OF ANALYSIS**

| A |    |
|---|----|
| A | 13 |

SDG: 180907-101 Client Reference: 118174 Report Number: 477149 Location: Order Number: 118174 Superseded Report: 472045 Avoca **Results Legend** 8282246 18282253 8282254 8282256 8282247 8282250 8282259 8282257 8282258 Lab Sample No(s) X Test No Determination Possible US Ballygahan Adit **AVOCA Bridge** DS Deep Adit DS Mill Race AVDB02.1 AVSD01.11 AVSD02.11 Customer 7 Sample Reference Sample Types -S - Soil/Solid UNS - Unspecified Solid GW - Ground Water **AGS Reference** SW - Surface Water LE - Land Leachate PL - Prepared Leachate PR - Process Water SA - Saline Water Depth (m) TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage 500ml Plastic (ALE208) HNO3 Filtered (ALE204) H2SO4 (ALE244) RE - Recreational Water 500ml Plastic (ALE208) HNO3 Filtered (ALE204) HNO3 Filtered (ALE204) 500ml Plastic (ALE208) HNO3 Filtered (ALE204) 500ml Plastic (ALE208) HNO3 Filtered (ALE204) 500ml Plastic (ALE208) HNO3 Filtered (ALE204) H2SO4 (ALE244) HNO3 Filtered (ALE204) H2SO4 (ALE244) HNO3 Filtered (ALE204) H2SO4 (ALE244) H2SO4 (ALE244) 500ml Plastic (ALE208) DW - Drinking Water Non-regulatory UNL - Unspecified Liquid Container SL - Sludge G - Gas OTH - Other Sample Type WS Ammoniacal Nitrogen All NDPs: 0 Tests: 11 Χ Х Χ Χ Anions by Kone (w) All NDPs: 0 Tests: 11 X Χ Χ X X Χ Dissolved Metals by ICP-MS All NDPs: 0 Tests: 14 Х Х Х Х Х X X X pH Value ΔII NDPs: 0 Tests: 11 X X X X Х X All Total Organic and Inorganic Carbon NDPs: 0 Tests: 11

Χ

Χ

Χ

X

Χ

| Whites Bridge CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |   |   | X | WS | H2SO4 (ALE244) |                    |          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|----|----------------|--------------------|----------|
| Whites Bridge CS    ALEZO4   ALEZO4   SW   X   X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | X |   |   | WS |                | US Ballygahan Adit | 18282250 |
| Whites Bridge GS    HNO3 Filtered   SW   X   X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X |   | X |   | WS |                |                    |          |
| Whites Bridge GS         HNO3 Filtered (ALE204)         SW         X           H2SO4 (ALE244)         SW         X         X           S00ml Plastic (ALE208)         SW         X         X           Whites Bridge         HNO3 Filtered (ALE208)         SW         X         X           WCC Main Yard         HNO3 Filtered (ALE208)         SW         X         X           WCC Main Yard         HNO3 Filtered (ALE208)         SW         X         X           WCC Main Yard         HNO3 Filtered (ALE204)         SW         X         X           WCC Main Yard         HNO3 Filtered (ALE204)         SW         X         X           WCC Main Yard         HNO3 Filtered (ALE204)         SW         X         X           WCC Main Yard         HNO3 Filtered (ALE204)         SW         X         X           WCC Main Yard         HNO3 Filtered (ALE204)         SW         X         X           WCC Main Yard         HNO3 Filtered (ALE204)         SW         X         X           WCC Main Yard         HNO3 Filtered (ALE204)         SW         X         X           WCC Main Yard         HNO3 Filtered (ALE204)         SW         X         X           WCC Main Yard         HNO3 F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |   |   | Х | WS |                |                    |          |
| Whites Bridge GS         HOSO4 (ALE204)         SW         X           H2SO4 (ALE244)         SW         X         X           S00ml Plastic (ALE208)         SW         X         X           Whites Bridge         H0SO4 (ALE204)         SW         X         X           WCC Main Yard         H0SO4 (ALE204)         SW         X         X           H0SO4 (ALE204)         SW         X         X         X <t< th=""><th></th><th>Х</th><th></th><th></th><th>WS</th><th></th><th>US of Road Adit</th><th>18282249</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   | Х |   |   | WS |                | US of Road Adit    | 18282249 |
| Whites Bridge GS         HOUS Filtered (ALE204)         SW         X           H2SO4 (ALE244)         SW         X         X           H2SO4 (ALE244)         SW         X         X           S00ml Plastic (ALE208)         SW         X         X           H2SO4 (ALE244)         SW         X         X           WCC Main Yard         H003 Filtered (ALE208)         SW         X         X           H2SO4 (ALE244)         SW         X         X         X           H003 Filtered (ALE208)         SW         X         X         X           H003 Filtered (ALE204)         SW         X         X         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Х |   | X |   | WS |                |                    |          |
| Whites Bridge GS         HNO3 Filtered (ALE204)         SW         X           (ALE204)         SW         X         X           H2SO4 (ALE244)         SW         X         X           S00ml Plastic (ALE208)         SW         X         X           HNO3 Filtered (ALE204)         SW         X         X           WCC Main Yard         HNO3 Filtered (ALE208)         SW         X         X           HNO3 Filtered (ALE204)         SW         X         X           HNO3 Filtered (ALE204)         SW         X         X           WCC Main Yard         HNO3 Filtered (ALE204)         SW         X         X           HNO3 Filtered (ALE204)         SW         X         X         X           WCC Main Yard         HNO3 Filtered (ALE204)         SW         X         X         X           HNO3 Filtered (ALE204)         SW         X         X         X         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |   |   | X | WS |                |                    |          |
| Whites Bridge GS         HOSS Filtered (ALE204)         SW         X           H2SO4 (ALE244)         SW         X         X           500ml Plastic (ALE208)         SW         X         X           Whites Bridge         H035 Filtered (ALE208)         SW         X         X           H036 Filtered (ALE204)         SW         X         X         X           WCC Main Yard         H036 Filtered (ALE204)         SW         X         X         X           H036 Filtered (ALE204)         SW         X         X         X         X         X           S00ml Plastic (ALE204)         SW         X         X         X         X         X         X         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | X |   |   | WS |                | US Whites Bridge   | 18282255 |
| Whites Bridge GS         HNO3 Filtered (ALE204)         SW         X           (ALE204)         SW         X         X           H2SO4 (ALE244)         SW         X         X           500ml Plastic (ALE208)         SW         X         X           HNO3 Filtered (ALE204)         SW         X         X           WCC Main Yard         HNO3 Filtered (ALE204)         SW         X         X           H2SO4 (ALE204)         SW         X         X         X           H2SO4 (ALE244)         SW         X         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X |   | Х |   | WS |                |                    |          |
| Whites Bridge GS         HNO3 Filtered (ALE204)         SW         X           (ALE204)         SW         X         X           H2SO4 (ALE244)         SW         X         X           S00ml Plastic (ALE208)         SW         X         X           Whites Bridge         HNO3 Filtered (ALE204)         SW         X           WCC Main Yard         500ml Plastic (ALE204)         SW         X           WCC Main Yard         HNO3 Filtered (ALE204)         SW         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |   |   | X | WS |                |                    |          |
| Whites Bridge GS    HOSO4 (ALE204)   SW   X     H2SO4 (ALE244)   SW   X     F300ml Plastic (ALE208)   H2SO4 (ALE244)   SW   X     Whites Bridge   H2SO4 (ALE204)   SW   X     H2SO4 (ALE204)   SW   X     H2SO4 (ALE204)   SW   X     H2SO4 (ALE204)   SW   X     H2SO4 (ALE208)   SW   X |   | X |   |   | WS |                | WCC Main Yard      | 18282248 |
| Whites Bridge GS  HNO3 Filtered SW  (ALE204)  H2SO4 (ALE244) SW  S00ml Plastic SW  (ALE208)  HNO3 Filtered SW  X  X  X  X  X  X  X  X  X  X  X  X  X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | X |   | Х |   | WS |                |                    |          |
| Whites Bridge GS         HNO3 Filtered (ALE204)         SW         X           H2SO4 (ALE244)         SW         X         X           500ml Plastic (ALE208)         SW         X         X           Whites Bridge         HNO3 Filtered (ALE204)         SW         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |   |   | X | WS |                |                    |          |
| Whites Bridge GS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | X |   |   | WS |                | Whites Bridge      | 18282251 |
| Whites Bridge GS HNO3 Filtered SW (ALE204) H2SO4 (ALE244) SW X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Х |   | Х |   | WS |                |                    |          |
| Whites Bridge GS HNO3 Filtered SW (ALE204)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |   |   | X | WS |                |                    |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | X |   |   | WS |                | Whites Bridge GS   | 18282252 |



SDG: 180907-101 Location: Avoca

Client Reference: 118174 Order Number: 118174

Report Number: Superseded Report:

477149 472045

| Results Legend                                                                                            | C           | Customer Sample Ref.        | AVDB02.11                | AVOCA Bridge                           | AVSD01.11                              | AVSD02.11                | DS Deep Adit             | DS Mill Race             |
|-----------------------------------------------------------------------------------------------------------|-------------|-----------------------------|--------------------------|----------------------------------------|----------------------------------------|--------------------------|--------------------------|--------------------------|
| # ISO17025 accredited.  M mCERTS accredited.                                                              | Ĭ           | astomer dample Rei.         | AVDBUZ.11                | AVOCA Bridge                           | AVSDUT.TT                              | AV5D02.11                | DS Deep Adit             | DS MIII Race             |
| aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. |             | Depth (m)<br>Sample Type    | Surface Water (SW)       | Surface Water (SW)                     | Surface Water (SW)                     | Surface Water (SW)       | Surface Water (SW)       | Surface Water (SW)       |
| * Subcontracted test.  ** % recovery of the surrogate stand                                               | dard to     | Date Sampled<br>Sample Time | 05/09/2018               | 05/09/2018                             | 05/09/2018                             | 05/09/2018               | 05/09/2018               | 05/09/2018               |
| check the efficiency of the metho<br>results of individual compounds to                                   | within      | Date Received<br>SDG Ref    | 07/09/2018<br>180907-101 | 07/09/2018<br>180907-101               | 07/09/2018<br>180907-101               | 07/09/2018<br>180907-101 | 07/09/2018<br>180907-101 | 07/09/2018<br>180907-101 |
| samples aren't corrected for the r (F) Trigger breach confirmed                                           | ecovery     | Lab Sample No.(s)           | 18282259                 | 18282246                               | 18282257                               | 18282258                 | 18282253                 | 18282254                 |
| 1-5&+§@ Sample deviation (see appendix)  Component                                                        | LOD/Units   | AGS Reference<br>Method     |                          |                                        |                                        |                          |                          |                          |
| Organic Carbon, Total                                                                                     | <3 mg/l     | TM090                       |                          | <3<br>#                                |                                        |                          | <3<br>#                  | <3<br>#                  |
| Ammoniacal Nitrogen as N                                                                                  | <0.2 mg/l   | TM099                       |                          | <0.2                                   |                                        |                          | <0.2                     | <0.2                     |
| Aluminium (diss.filt)                                                                                     | <10 µg/l    | TM152                       | <10                      | 21.1                                   | 56.1                                   | 34.7                     | 53.9                     | 117                      |
| Antimony (diss.filt)                                                                                      | <1 µg/l     | TM152                       | <1                       | <1 **                                  | *<br><1                                | #<br><1                  | #<br><1                  | <1 **                    |
| Arsenic (diss.filt)                                                                                       | <0.5 µg/l   | TM152                       | <0.5                     | <0.5                                   | <0.5                                   | <0.5                     | <0.5                     | <0.5                     |
| Barium (diss.filt)                                                                                        | <0.2 µg/l   | TM152                       | <0.2                     | 6.3                                    | #<br>5.9                               | #<br>5.41                | 5.48                     | 5.47                     |
| Cadmium (diss.filt)                                                                                       | <0.08 µg/l  | TM152                       | <0.08                    | 0.972                                  | 0.888                                  | <b>*</b>                 | #<br>0.973               | #<br>0.621               |
| Chromium (diss.filt)                                                                                      |             | TM152                       | <1                       | ************************************** | ************************************** | */<br>*/                 | <1 ***                   | <1 ***                   |
|                                                                                                           | <1 µg/l     |                             | #                        | #                                      | #                                      | #                        | #                        | #                        |
| Cobalt (diss.filt)                                                                                        | <0.5 µg/l   | TM152                       | <0.5<br>#                | 1.82<br>#                              | 1.44<br>#                              | <0.5<br>#                | 1.09<br>#                | 1.05<br>#                |
| Copper (diss.filt)                                                                                        | <0.3 µg/l   | TM152                       | <0.3<br>#                | 20.2                                   | 27.4<br>#                              | 0.693<br>#               | 16.7<br>#                | 21.5<br>#                |
| Lead (diss.filt)                                                                                          | <0.2 µg/l   | TM152                       | <0.2                     | 1.14<br>#                              | 1.93<br>#                              | 0.583<br>#               | 3 #                      | 1.84<br>#                |
| Manganese (diss.filt)                                                                                     | <3 µg/l     | TM152                       | <3 #                     | 114<br>#                               | 79.4<br>#                              | 3.96<br>#                | 51.5<br>#                | 53.2                     |
| Molybdenum (diss.filt)                                                                                    | <3 µg/l     | TM152                       | <3 #                     | <3<br>#                                | <3 #                                   | <3 #                     | <3<br>#                  | <3 #                     |
| Nickel (diss.filt)                                                                                        | <0.4 µg/l   | TM152                       | <0.4                     | 1.34                                   | 0.974                                  | 0.474                    | 0.793                    | 0.927                    |
| Vanadium (diss.filt)                                                                                      | <1 µg/l     | TM152                       | <1 #                     | #<br><1<br>#                           | *<br><1                                | #<br><1<br>#             | *<br><1                  | *<br><1                  |
| Zinc (diss.filt)                                                                                          | <1 µg/l     | TM152                       | 2.35                     | 393                                    | 357                                    | 16                       | #<br>395                 | 246                      |
| Calcium (Dis.Filt)                                                                                        | <0.2 mg/l   | TM152                       | <0.2                     | 2.66                                   | 2.33                                   | 2.06                     | 2.1                      | 2.16                     |
| Iron (Dis.Filt)                                                                                           | <0.019 mg/l | TM152                       | <0.019                   | 0.235                                  | 0.208                                  | 0.0553                   | 0.249                    | 0.147                    |
| Sulphate                                                                                                  | <2 mg/l     | TM184                       | #                        | 20.4                                   | #                                      | #                        | 15.6                     | 13.3                     |
| pH                                                                                                        | <1 pH Units | TM256                       |                          | 6.79                                   |                                        |                          | 6.61                     | 6.73                     |
|                                                                                                           |             |                             |                          | #                                      |                                        |                          | #                        | #                        |
|                                                                                                           | -           |                             |                          |                                        |                                        |                          |                          |                          |
|                                                                                                           |             |                             |                          |                                        |                                        |                          |                          |                          |
|                                                                                                           |             |                             |                          |                                        |                                        |                          |                          |                          |
|                                                                                                           |             |                             |                          |                                        |                                        |                          |                          |                          |
|                                                                                                           |             |                             |                          |                                        |                                        |                          |                          |                          |
|                                                                                                           |             |                             |                          |                                        |                                        |                          |                          |                          |
|                                                                                                           |             |                             |                          |                                        |                                        |                          |                          |                          |
|                                                                                                           |             |                             |                          |                                        |                                        |                          |                          |                          |
|                                                                                                           |             |                             |                          |                                        |                                        |                          |                          |                          |
|                                                                                                           |             |                             |                          |                                        |                                        |                          |                          |                          |
|                                                                                                           |             |                             |                          |                                        |                                        |                          |                          |                          |
|                                                                                                           |             |                             |                          |                                        |                                        |                          |                          |                          |
|                                                                                                           |             |                             |                          |                                        |                                        |                          |                          |                          |



 SDG:
 180907-101
 Client Reference:
 118174
 Report Number:
 477149

 Location:
 Avoca
 Order Number:
 118174
 Superseded Report:
 472045

|                 | Results Legend                                                         |             | ustomer Sample Ref.         | T4                               | Tr                                     | LIC Dellimentes A                | LIC of Dood Adia                 | HO White Bride                   | WCC Main Vand                    |
|-----------------|------------------------------------------------------------------------|-------------|-----------------------------|----------------------------------|----------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
|                 | 17025 accredited. ERTS accredited.                                     | Ĭ           | ustomer sample iter.        | T1                               | T5                                     | US Ballygahan A<br>dit           | US of Road Adit                  | US Whites Bridg<br>e             | WCC Main Yard                    |
| aq Aqu          | ieous / settled sample.<br>solved / filtered sample.                   |             | Depth (m)                   |                                  |                                        |                                  |                                  |                                  |                                  |
| tot.unfilt Tota | al / unfiltered sample.                                                |             | Sample Type<br>Date Sampled | Surface Water (SW)<br>05/09/2018 | Surface Water (SW)<br>05/09/2018       | Surface Water (SW)<br>05/09/2018 | Surface Water (SW)<br>05/09/2018 | Surface Water (SW)<br>05/09/2018 | Surface Water (SW)<br>05/09/2018 |
| ** % re         | ecovery of the surrogate standar                                       |             | Sample Time                 |                                  |                                        |                                  |                                  |                                  |                                  |
| resu            | ults of individual compounds wit<br>aples aren't corrected for the rec | thin        | Date Received<br>SDG Ref    | 07/09/2018<br>180907-101         | 07/09/2018<br>180907-101               | 07/09/2018<br>180907-101         | 07/09/2018<br>180907-101         | 07/09/2018<br>180907-101         | 07/09/2018<br>180907-101         |
| (F) Trig        | ger breach confirmed                                                   | overy       | Lab Sample No.(s)           | 18282256                         | 18282247                               | 18282250                         | 18282249                         | 18282255                         | 18282248                         |
| Component       | nple deviation (see appendix)                                          | LOD/Units   | AGS Reference<br>Method     |                                  |                                        |                                  |                                  |                                  |                                  |
| Organic Car     |                                                                        | <3 mg/l     | TM090                       | <3                               | <3                                     | <3                               | <3                               | <3                               | <3                               |
| Ammoniacal      | l Nitrogen as N                                                        | <0.2 mg/l   | TM099                       | <0.2                             | <0.2                                   | <b>*</b>                         | <b>*</b>                         | <0.2                             | 0.234                            |
| Ammoniacai      | i Milogen as N                                                         | ₹0.2 mg/i   | 110000                      | ¥                                | ************************************** | *U.Z                             | *U.Z                             | \0.2<br>#                        | U.20 <del>4</del><br>#           |
| Aluminium (     | diss.filt)                                                             | <10 µg/l    | TM152                       | 34                               | 40.2                                   | 72.8                             | 50.9                             | 33                               | 104                              |
| Antimony (di    | iss filt)                                                              | <1 µg/l     | TM152                       | <b>*</b>                         | #<br><1                                | #<br><1                          | #<br><1                          | #<br><1                          | #<br><1                          |
| 7 triumorry (di | 155.mt/j                                                               | -1 μg/1     | TWITOE                      | `'                               | *1                                     | *'                               | *'                               | `'                               | `'                               |
| Arsenic (diss   | s.filt)                                                                | <0.5 µg/l   | TM152                       | 0.502                            | 0.502                                  | <0.5                             | <0.5                             | 0.526                            | 0.719                            |
| Barium (diss    | · filt/                                                                | <0.2 µg/l   | TM152                       | 5.11                             | #<br>6.4                               | 5.75                             | 5.77                             | 5.02<br>5.02                     | 6.24                             |
| Danum (diss     | s.iiit)                                                                | -0.2 μg/i   | TIVITOZ                     | J.11 #                           | U.4<br>#                               | 5.75                             | 5.77<br>#                        | J.02<br>#                        | U.24<br>#                        |
| Cadmium (d      | liss.filt)                                                             | <0.08 µg/l  | TM152                       | <0.08                            | 1.04                                   | 0.825                            | 0.827                            | <0.08                            | 1.16                             |
| Chromium (d     | dice filt)                                                             | <1 µg/l     | TM152                       | <b>*</b>                         | #<br><1                                | #<br><1                          | #<br><1                          | #<br><1                          | #<br><1                          |
| Cilionilum (C   | uiss.iiit)                                                             | <1 μg/i     | 1101132                     | <u> </u>                         | <u> </u>                               | <u> </u>                         | <u> </u>                         | <u> </u>                         | <b>~</b> 1                       |
| Cobalt (diss.   | .filt)                                                                 | <0.5 µg/l   | TM152                       | <0.5                             | 2.02                                   | 1.24                             | 1.38                             | <0.5                             | 2.97                             |
| Copper (diss    | s filt)                                                                | <0.3 µg/l   | TM152                       | 0.563                            | 28.8                                   | #<br>27.2                        | #<br>26.9                        | 0.479                            | #<br>36.4                        |
| Copper (disc    | 5.iiit)                                                                | 10.0 µg/i   | TWITOE                      | #                                | #                                      | £1.2<br>#                        | ±0.5<br>#                        | 0.475<br>#                       | #                                |
| Lead (diss.fil  | lt)                                                                    | <0.2 µg/l   | TM152                       | 0.502                            | 3.42                                   | 3.05                             | 1.95                             | 0.492                            | 9.28                             |
| Manganese       | (diss filt)                                                            | <3 µg/l     | TM152                       | 3.78                             | #<br>123                               | #<br>64.1                        | #<br>75.2                        | 4.58                             | #<br>201                         |
| manganooo       | (4.00)                                                                 | ۰ ۳۹۰       | 92                          | #                                | #                                      | #                                | #                                | #                                | ±0.<br>#                         |
| Molybdenum      | n (diss.filt)                                                          | <3 µg/l     | TM152                       | <3                               | 6.56                                   | <3                               | <3                               | <3                               | <3                               |
| Nickel (diss.:  | filt)                                                                  | <0.4 µg/l   | TM152                       | 0.417                            | 1.4                                    | #<br>0.961                       | 1.08                             | 0.403                            | #<br>1.69                        |
| (               | ···· <del>·</del> /                                                    |             |                             | #                                | #                                      | #                                | #                                | #                                | #                                |
| Vanadium (d     | diss.filt)                                                             | <1 µg/l     | TM152                       | <1                               | <1                                     | <1<br>"                          | <1                               | <1                               | <1                               |
| Zinc (diss.filt | t)                                                                     | <1 µg/l     | TM152                       | 11.3                             | #<br>415                               | 336                              | #<br>349                         | 13.2                             | #<br>497                         |
| ,               | ,                                                                      |             |                             | #                                | #                                      | #                                | #                                | #                                | #                                |
| Calcium (Dis    | s.Filt)                                                                | <0.2 mg/l   | TM152                       | 2.04<br>#                        | 2.56<br>#                              | 2.23<br>#                        | 2.23<br>#                        | 2.03 #                           | 3.05<br>#                        |
| Iron (Dis.Filt) | :)                                                                     | <0.019 mg/l | TM152                       | 0.0521                           | 0.55                                   | 0.195                            | 0.199                            | 0.0533                           | 1.15                             |
|                 |                                                                        |             |                             | #                                | #                                      | #                                | #                                | #                                | #                                |
| Sulphate        |                                                                        | <2 mg/l     | TM184                       | 4 #                              | 21.5<br>#                              | 14.2<br>#                        | 15.8<br>#                        | 3.9<br>#                         | 28.6<br>#                        |
| рН              |                                                                        | <1 pH Units | TM256                       | 6.98                             | 6.47                                   | 6.5                              | 6.44                             | 6.97                             | 6.01                             |
|                 |                                                                        |             |                             | #                                | #                                      | #                                | #                                | #                                | #                                |
|                 |                                                                        |             |                             |                                  |                                        |                                  |                                  |                                  |                                  |
|                 |                                                                        |             |                             |                                  |                                        |                                  |                                  |                                  |                                  |
|                 |                                                                        |             |                             |                                  |                                        |                                  |                                  |                                  |                                  |
|                 |                                                                        |             |                             |                                  |                                        |                                  |                                  |                                  |                                  |
|                 |                                                                        |             |                             |                                  |                                        |                                  |                                  |                                  |                                  |
|                 |                                                                        |             |                             |                                  |                                        |                                  |                                  |                                  |                                  |
|                 |                                                                        |             |                             |                                  |                                        |                                  |                                  |                                  |                                  |
|                 |                                                                        |             |                             |                                  |                                        |                                  |                                  |                                  |                                  |
|                 |                                                                        |             |                             |                                  |                                        |                                  |                                  |                                  |                                  |
|                 |                                                                        |             |                             |                                  |                                        |                                  |                                  |                                  |                                  |
|                 |                                                                        |             |                             |                                  |                                        |                                  |                                  |                                  |                                  |
|                 |                                                                        |             |                             |                                  |                                        |                                  |                                  |                                  |                                  |
|                 |                                                                        |             |                             |                                  |                                        |                                  |                                  |                                  |                                  |
|                 |                                                                        |             |                             |                                  |                                        |                                  |                                  |                                  |                                  |
|                 |                                                                        |             |                             |                                  |                                        |                                  |                                  |                                  |                                  |
|                 |                                                                        |             |                             |                                  |                                        |                                  |                                  |                                  |                                  |
|                 |                                                                        |             |                             |                                  |                                        |                                  |                                  |                                  |                                  |
|                 |                                                                        |             |                             |                                  |                                        |                                  |                                  |                                  |                                  |





 SDG:
 180907-101

 Location:
 Avoca

Client Reference: 118174 Order Number: 118174

Report Number: Superseded Report: 477149 472045

| Results Legend                                                                                            | 0              | Customer Sample Ref.        | Whites Bridge            | Whites Bridge G          | 1 | <u> </u> |  |
|-----------------------------------------------------------------------------------------------------------|----------------|-----------------------------|--------------------------|--------------------------|---|----------|--|
| # ISO17025 accredited.  M mCERTS accredited.                                                              |                | ·                           | Times Bridge             | S                        |   |          |  |
| aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. |                | Depth (m)<br>Sample Type    | Surface Water (SW)       | Surface Water (SW)       |   |          |  |
| * Subcontracted test.  ** % recovery of the surrogate standa                                              | ard to         | Date Sampled<br>Sample Time | 05/09/2018               | 05/09/2018               |   |          |  |
| check the efficiency of the method.<br>results of individual compounds wi                                 | . The<br>ithin | Date Received<br>SDG Ref    | 07/09/2018<br>180907-101 | 07/09/2018<br>180907-101 |   |          |  |
| samples aren't corrected for the red (F) Trigger breach confirmed                                         | covery         | Lab Sample No.(s)           | 18282251                 | 18282252                 |   |          |  |
| 1-5&+§@ Sample deviation (see appendix)  Component                                                        | LOD/Units      | AGS Reference<br>Method     |                          |                          |   |          |  |
| Organic Carbon, Total                                                                                     | <3 mg/l        | TM090                       | <3<br>#                  | <3<br>#                  |   |          |  |
| Ammoniacal Nitrogen as N                                                                                  | <0.2 mg/l      | TM099                       | <0.2                     | <0.2<br>#                |   |          |  |
| Aluminium (diss.filt)                                                                                     | <10 µg/l       | TM152                       | 34.6 #                   | 82.7<br>#                |   |          |  |
| Antimony (diss.filt)                                                                                      | <1 µg/l        | TM152                       | <1                       | <1                       |   |          |  |
| Arsenic (diss.filt)                                                                                       | <0.5 µg/l      | TM152                       | <0.5<br>#                | 0.543<br>#               |   |          |  |
| Barium (diss.filt)                                                                                        | <0.2 µg/l      | TM152                       | 5.19 #                   | 5.14                     |   |          |  |
| Cadmium (diss.filt)                                                                                       | <0.08 µg/l     | TM152                       | <0.08                    | 0.12<br>#                |   |          |  |
| Chromium (diss.filt)                                                                                      | <1 µg/l        | TM152                       | <1 #                     | <1 #                     |   |          |  |
| Cobalt (diss.filt)                                                                                        | <0.5 µg/l      | TM152                       | <0.5<br>#                | <0.5<br>#                |   |          |  |
| Copper (diss.filt)                                                                                        | <0.3 µg/l      | TM152                       | 1.07<br>#                | 6.14<br>#                |   |          |  |
| Lead (diss.filt)                                                                                          | <0.2 µg/l      | TM152                       | 0.552<br>#               | 0.588<br>#               |   |          |  |
| Manganese (diss.filt)                                                                                     | <3 µg/l        | TM152                       | 6.7<br>#                 | 16.5<br>#                |   |          |  |
| Molybdenum (diss.filt)                                                                                    | <3 µg/l        | TM152                       | <3<br>#                  | <3<br>#                  |   |          |  |
| Nickel (diss.filt)                                                                                        | <0.4 µg/l      | TM152                       | 0.479<br>#               | 0.49<br>#                |   |          |  |
| Vanadium (diss.filt)                                                                                      | <1 µg/l        | TM152                       | <1<br>#                  | <1<br>#                  |   |          |  |
| Zinc (diss.filt)                                                                                          | <1 µg/l        | TM152                       | 16.5<br>#                | 37.1<br>#                |   |          |  |
| Calcium (Dis.Filt)                                                                                        | <0.2 mg/l      | TM152                       | 2.1<br>#                 | 2.09<br>#                |   |          |  |
| Iron (Dis.Filt)                                                                                           | <0.019 mg/l    | TM152                       | 0.0513<br>#              | 0.0513<br>#              |   |          |  |
| Sulphate                                                                                                  | <2 mg/l        | TM184                       | 4.2<br>#                 | 5.1<br>#                 |   |          |  |
| pН                                                                                                        | <1 pH Units    | TM256                       | 6.97<br>#                | 6.93<br>#                |   |          |  |
|                                                                                                           |                |                             |                          |                          |   |          |  |
|                                                                                                           |                |                             |                          |                          |   |          |  |
|                                                                                                           |                |                             |                          |                          |   |          |  |
|                                                                                                           |                |                             |                          |                          |   |          |  |
|                                                                                                           |                |                             |                          |                          |   |          |  |
|                                                                                                           |                |                             |                          |                          |   |          |  |
|                                                                                                           |                |                             |                          |                          |   |          |  |
|                                                                                                           |                |                             |                          |                          |   |          |  |
|                                                                                                           |                |                             |                          |                          |   |          |  |
|                                                                                                           |                |                             |                          |                          |   |          |  |
|                                                                                                           |                |                             |                          |                          |   |          |  |
|                                                                                                           |                |                             |                          |                          |   |          |  |





 SDG:
 180907-101
 Client Reference:
 118174
 Report Number:
 477149

 Location:
 Avoca
 Order Number:
 118174
 Superseded Report:
 472045

## **Table of Results - Appendix**

| Reference                                                                                                                                                         | Description                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Method 5310, AWWA/APHA, 20th Ed., 1999 / Modified: US<br>EPA Method 415.1 & 9060                                                                                  | Determination of Total Organic Carbon/Total Inorganic Carbon in Water and Waste Water                                                                                                                                                                                                                      |
| BS 2690: Part 7:1968 / BS 6068: Part2.11:1984                                                                                                                     | Determination of Ammonium in Water Samples using the Kone Analyser                                                                                                                                                                                                                                         |
| Method 3125B, AWWA/APHA, 20th Ed., 1999                                                                                                                           | Analysis of Aqueous Samples by ICP-MS                                                                                                                                                                                                                                                                      |
| EPA Methods 325.1 & 325.2,                                                                                                                                        | The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric<br>Analysers                                                                                                                                                                                                             |
| The measurement of Electrical Conductivity and the<br>Laboratory determination of pH Value of Natural, Treated<br>and Wastewaters. HMSO, 1978. ISBN 011 751428 4. | Determination of pH in Water and Leachate using the GLpH pH Meter                                                                                                                                                                                                                                          |
|                                                                                                                                                                   | Method 5310, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 415.1 & 9060 BS 2690: Part 7:1968 / BS 6068: Part2.11:1984 Method 3125B, AWWA/APHA, 20th Ed., 1999 EPA Methods 325.1 & 325.2, The measurement of Electrical Conductivity and the Laboratory determination of pH Value of Natural, Treated |

NA = not applicable.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden (Method codes TM) or ALS Life Sciences Ltd Aberdeen (Method codes S).

## **CERTIFICATE OF ANALYSIS**



 SDG:
 180907-101
 Client Reference:
 118174
 Report Number:
 477149

 Location:
 Avoca
 Order Number:
 118174
 Superseded Report:
 472045

**Test Completion Dates** 

|                                                                   |                            |                                           |                            | 1                          |                                           | _                                         |                                           |                                           |                                           |                                           |
|-------------------------------------------------------------------|----------------------------|-------------------------------------------|----------------------------|----------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| Lab Sample No(s)                                                  | 18282259                   | 18282246                                  | 18282257                   | 18282258                   | 18282253                                  | 18282254                                  | 18282256                                  | 18282247                                  | 18282250                                  | 18282249                                  |
| Customer Sample Ref.                                              | AVDB02.11                  | AVOCA Bridge                              | AVSD01.11                  | AVSD02.11                  | DS Deep Adit                              | DS Mill Race                              | T1                                        | T5                                        | US Ballygahan A<br>dit                    | US of Road Adit                           |
| AGS Ref.                                                          |                            |                                           |                            |                            |                                           |                                           |                                           |                                           |                                           |                                           |
| Depth                                                             |                            |                                           |                            |                            |                                           |                                           |                                           |                                           |                                           |                                           |
| Typo                                                              |                            |                                           |                            |                            |                                           |                                           |                                           |                                           |                                           |                                           |
| Type                                                              | Surface Water              | Surface Water                             | Surface Water              | Surface Water              | Surface Water                             | Surface Water                             | Surface Water                             | Surface Water                             | Surface Water                             | Surface Water                             |
| Ammoniacal Nitrogen                                               | Surface Water              | Surface Water<br>12-Sep-2018              | Surface Water              | Surface Water              | Surface Water<br>12-Sep-2018              |
|                                                                   | Surface Water              |                                           | Surface Water              | Surface Water              |                                           |                                           |                                           |                                           |                                           |                                           |
| Ammoniacal Nitrogen                                               | Surface Water  10-Sep-2018 | 12-Sep-2018                               | Surface Water  10-Sep-2018 | Surface Water  10-Sep-2018 | 12-Sep-2018                               | 12-Sep-2018                               | 12-Sep-2018                               | 12-Sep-2018                               | 12-Sep-2018                               | 12-Sep-2018                               |
| Ammoniacal Nitrogen Anions by Kone (w)                            |                            | 12-Sep-2018<br>08-Sep-2018                |                            |                            | 12-Sep-2018<br>08-Sep-2018                | 12-Sep-2018<br>08-Sep-2018                | 12-Sep-2018<br>08-Sep-2018                | 12-Sep-2018<br>08-Sep-2018                | 12-Sep-2018<br>08-Sep-2018                | 12-Sep-2018<br>08-Sep-2018                |
| Ammoniacal Nitrogen Anions by Kone (w) Dissolved Metals by ICP-MS |                            | 12-Sep-2018<br>08-Sep-2018<br>10-Sep-2018 |                            |                            | 12-Sep-2018<br>08-Sep-2018<br>10-Sep-2018 | 12-Sep-2018<br>08-Sep-2018<br>10-Sep-2018 | 12-Sep-2018<br>08-Sep-2018<br>10-Sep-2018 | 12-Sep-2018<br>08-Sep-2018<br>11-Sep-2018 | 12-Sep-2018<br>08-Sep-2018<br>10-Sep-2018 | 12-Sep-2018<br>08-Sep-2018<br>10-Sep-2018 |

| Lab Sample No(s)                   | 18282255             | 18282248      | 18282251      | 18282252             |
|------------------------------------|----------------------|---------------|---------------|----------------------|
| Customer Sample Ref.               | US Whites Bridg<br>e | WCC Main Yard | Whites Bridge | Whites Bridge G<br>S |
| AGS Ref.                           |                      |               |               |                      |
| Depth                              |                      |               |               |                      |
| Туре                               | Surface Water        | Surface Water | Surface Water | Surface Water        |
| Ammoniacal Nitrogen                | 12-Sep-2018          | 12-Sep-2018   | 12-Sep-2018   | 12-Sep-2018          |
| Anions by Kone (w)                 | 08-Sep-2018          | 08-Sep-2018   | 08-Sep-2018   | 08-Sep-2018          |
| Dissolved Metals by ICP-MS         | 10-Sep-2018          | 10-Sep-2018   | 10-Sep-2018   | 10-Sep-2018          |
| pH Value                           | 11-Sep-2018          | 11-Sep-2018   | 11-Sep-2018   | 11-Sep-2018          |
| Total Organic and Inorganic Carbon | 11-Sep-2018          | 11-Sep-2018   | 11-Sep-2018   | 11-Sep-2018          |



 SDG:
 180907-101

 Location:
 Avoca

Client Reference: 118174 Order Number: 118174 Report Number: Superseded Report: 477149 472045

## **ASSOCIATED AQC DATA**

## Ammoniacal Nitrogen

| Component                | Method Code | QC 1855                        | QC 1861                        | QC 1878                        |
|--------------------------|-------------|--------------------------------|--------------------------------|--------------------------------|
| Ammoniacal Nitrogen as N | TM099       | <b>101.6</b><br>95.98 : 104.95 | <b>102.0</b><br>95.98 : 104.95 | <b>102.0</b><br>95.98 : 104.95 |

## Anions by Kone (w)

| Component                | Method Code | QC 1888        |
|--------------------------|-------------|----------------|
| Chloride                 | TM184       |                |
|                          |             | 92.93 : 115.43 |
| Phosphate (Ortho as PO4) | TM184       |                |
|                          |             | 96.40 : 108.40 |
| Sulphate (soluble)       | TM184       | 102.4          |
|                          |             | 90.53 : 113.03 |
| TON as NO3               | TM184       |                |
|                          |             | 96.26 : 111.21 |

## Dissolved Metals by ICP-MS

| Component | Method Code | QC 1801                         | QC 1849                         |
|-----------|-------------|---------------------------------|---------------------------------|
| Aluminium | TM152       | <b>99.0</b><br>90.09 : 112.69   | <b>100.67</b><br>94.19 : 114.31 |
| Antimony  | TM152       | <b>113.33</b><br>81.00 : 119.70 | <b>102.33</b><br>79.80 : 122.00 |
| Arsenic   | TM152       | <b>101.17</b><br>90.67 : 112.97 | <b>99.83</b><br>90.42 : 111.32  |
| Barium    | TM152       | <b>105.0</b><br>84.74 : 117.25  | <b>99.5</b><br>90.79 : 113.16   |
| Beryllium | TM152       | <b>100.83</b><br>88.27 : 113.27 | <b>102.67</b><br>93.25 : 120.04 |
| Bismuth   | TM152       | <b>102.17</b><br>86.72 : 115.61 | <b>100.33</b><br>94.65 : 117.05 |
| Borate    | TM152       |                                 | <b>101.85</b><br>88.00 : 112.00 |
| Boron     | TM152       | <b>98.67</b><br>82.81 : 116.65  | <b>102.0</b><br>86.68 : 117.67  |
| Cadmium   | TM152       | <b>103.17</b><br>90.28 : 114.48 | <b>101.67</b><br>94.60 : 112.40 |
| Calcium   | TM152       |                                 | <b>98.67</b><br>88.64 : 126.35  |
| Chromium  | TM152       | <b>100.33</b><br>89.50 : 108.80 | <b>99.5</b><br>93.28 : 110.91   |
| Cobalt    | TM152       | <b>99.67</b><br>89.66 : 112.39  | <b>99.33</b><br>84.39 : 114.26  |
| Copper    | TM152       | <b>100.17</b><br>88.45 : 117.93 | <b>99.67</b><br>88.86 : 118.72  |
| Iron      | TM152       |                                 | <b>100.0</b><br>92.00 : 113.00  |
| Lead      | TM152       | <b>103.67</b><br>89.25 : 115.12 | <b>96.83</b><br>89.25 : 115.12  |

## **CERTIFICATE OF ANALYSIS**



 SDG:
 180907-101
 Client Reference:
 118174
 Report Number:
 477149

 Location:
 Avoca
 Order Number:
 118174
 Superseded Report:
 472045

## Dissolved Metals by ICP-MS

|            |       | QC 1801        | QC 1849        |
|------------|-------|----------------|----------------|
| Lithium    | TM152 | 99.33          | 103.33         |
|            |       | 88.50 : 116.05 | 89.26 : 119.04 |
| Magnesium  | TM152 |                | 98.13          |
|            |       |                | 86.35 : 113.36 |
| Manganese  | TM152 | 99.83          | 100.5          |
|            |       | 91.63 : 112.33 | 94.24 : 112.74 |
| Molybdenum | TM152 | 100.33         | 98.83          |
|            |       | 86.94 : 106.49 | 87.00 : 108.89 |
| Nickel     | TM152 | 100.5          | 100.17         |
|            |       | 89.60 : 117.38 | 92.11 : 110.56 |
| Niobium    | TM152 |                |                |
|            |       | 96.38 : 128.85 |                |
| Phosphorus | TM152 | 100.17         | 99.0           |
|            |       | 90.43 : 111.75 | 90.52 : 115.47 |
| Potassium  | TM152 |                | 98.13          |
|            |       |                | 90.23 : 109.87 |
| Selenium   | TM152 | 102.83         | 100.5          |
|            |       | 88.22 : 113.50 | 88.44 : 113.86 |
| Silver     | TM152 | 101.5          | 100.17         |
|            |       | 91.29 : 113.29 | 87.04 : 107.38 |
| Sodium     | TM152 |                | 98.13          |
|            |       |                | 92.68 : 108.68 |
| Strontium  | TM152 | 100.33         | 101.67         |
|            |       | 91.27 : 106.32 | 90.72 : 114.82 |
| Tellurium  | TM152 | 97.17          | 97.33          |
|            |       | 81.16 : 111.23 | 90.72 : 112.62 |
| Thallium   | TM152 | 89.17          | 94.83          |
|            |       | 81.70 : 117.09 | 86.08 : 122.48 |
| Tin        | TM152 |                | 101.0          |
|            |       |                | 91.00 : 109.00 |
| Titanium   | TM152 | 99.67          | 99.67          |
|            |       | 89.62 : 110.62 | 92.82 : 118.92 |
| Tungsten   | TM152 | 104.33         | 99.67          |
|            |       | 88.98 : 114.68 | 78.12 : 132.82 |
| Uranium    | TM152 | 104.5          | 99.33          |
|            |       | 92.30 : 116.90 | 90.58 : 113.28 |
| Vanadium   | TM152 | 105.83         | 98.0           |
|            |       | 88.22 : 118.55 | 88.43 : 114.30 |
| Zinc       | TM152 | 101.33         | 101.67         |
|            |       | 89.30 : 115.44 | 86.52 : 115.27 |
| Zirconium  | TM152 |                |                |
|            |       | 85.51 : 109.42 |                |
|            |       |                |                |

## pH Value

| Component | Method Code | QC 1845                        |
|-----------|-------------|--------------------------------|
| рН        | TM256       | <b>100.4</b><br>99.20 : 102.14 |

## Total Organic and Inorganic Carbon

### **CERTIFICATE OF ANALYSIS**



 SDG:
 180907-101
 Client Reference:
 118174
 Report Number:
 477149

 Location:
 Avoca
 Order Number:
 118174
 Superseded Report:
 472045

Total Organic and Inorganic Carbon

| Component            | Method Code | QC 1864                         | QC 1805                        | QC 1803                         |
|----------------------|-------------|---------------------------------|--------------------------------|---------------------------------|
| Total Organic Carbon | TM090       | <b>101.67</b><br>97.97 : 110.17 | <b>101.5</b><br>97.97 : 110.17 | <b>101.67</b><br>97.97 : 110.17 |

The above information details the reference name of the analytical quality control sample (AQC) that has been run with the samples contained in this report for the different methods of analysis.

The figure detailed is the percentage recovery result for the AQC.

The subscript numbers below are the percentage recovery lower control limit (LCL) and the upper control limit (UCL). The percentage recovery result for the AQC should be between these limits to be statistically in control.



SDG: 180907-101 Client Reference: 118174 477149 Report Number: 118174 Superseded Report: Location: Avoca Order Number: 472045

Appendix

## General

- 1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except 21. For the BSEN 12457-3 two batch process to allow the cumulative release to be for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.
- 2. Samples will be run in duplicate upon request, but an additional charge may be incurred.
- 3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.
- 4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised
- 6. When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.
- 7. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.
- 8. If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.
- 9. NDP No determination possible due to insufficient/unsuitable sample.
- 10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals - total metals must be requested separately
- 11. Results relate only to the items tested.
- 12. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected
- 13. Surrogate recoveries Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect
- 14. Product analyses Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors
- 15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).
- 16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 15).
- Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- 19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.
- 20. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.

- calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
- 22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.
- 23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised
- 24. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

#### Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

| 1 | Container with Headspace provided for volatiles analysis       |
|---|----------------------------------------------------------------|
| 2 | Incorrect container received                                   |
| 3 | Deviation from method                                          |
| 4 | Holding time exceeded before sample received                   |
| 5 | Samples exceeded holding time before presevation was performed |
| § | Sampled on date not provided                                   |
| • | Sample holding time exceeded in laboratory                     |
| @ | Sample holding time exceeded due to sampled on date            |
| & | Sample Holding Time exceeded - Late arrival of instructions.   |

#### Asbestos

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

| Asbe stos Type            | Common Name    |
|---------------------------|----------------|
| Chrysof le                | White Asbesbs  |
| Amosite                   | Brown Asbestos |
| Cro d dolite              | Blue Asbe stos |
| Fibrous Act nolite        | -              |
| Fib to us Anthop hyll ite | -              |
| Fibrous Tremolite         | -              |

#### Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.



Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside

> Tel: (01244) 528700 Fax: (01244) 528701

CH5 3US

email: hawardencustomerservices@alsglobal.com Website: www.alsenvironmental.co.uk

CDM Smith 15 Wentworth Elbana Villas Dublin Dublin 2 D02 WK10

**Attention:** Laura Foley

## **CERTIFICATE OF ANALYSIS**

Date:18 September 2018Customer:D\_CDMSMITH\_DUB

Sample Delivery Group (SDG):180908-181Your Reference:118174Location:AvocaReport No:472797

This report has been revised and directly supersedes 472389 in its entirety.

We received 2 samples on Saturday September 08, 2018 and 2 of these samples were scheduled for analysis which was completed on Thursday September 13, 2018. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden (Method codes TM) or ALS Life Sciences Ltd Aberdeen (Method codes S).

Approved By:

Sonia McWhan
Operations Manager







Validated

**SDG:** 180908-181 **Location:** Avoca

Client Reference: 118174 Order Number: 118174-R Report Number: Superseded Report: 472797 472389

# **Received Sample Overview**

| Lab Sample No(s) | Customer Sample Ref. | AGS Ref. | Depth (m) | Sampled Date |
|------------------|----------------------|----------|-----------|--------------|
| 18291861         | AVGD01.11            |          |           | 07/09/2018   |
| 18291860         | GW1/05               |          |           | 07/09/2018   |

Maximum Sample/Coolbox Temperature (°C): 14.2

ISO5667-3 Water quality - Sampling - Part3 - During Transportation samples shall be stored in a cooling device capable of maintaining a temperature of  $(5\pm3)^{\circ}C$ .

ALS have data which show that a cool box with 4 frozen icepacks is capable of maintaining pre-chilled samples at a temperature of (5±3)°C for a period of up to 24hrs

Only received samples which have had analysis scheduled will be shown on the following pages.

Validated



 SDG:
 180908-181
 Client Reference:
 118174
 Report Number:
 472797

 Location:
 Avoca
 Order Number:
 118174-R2
 Superseded Report:
 472389

| Results Legend  X Test  N Determination Possible                                                                              | Lab Sample No(s)       |                     |           |                           |                   | 18291860                  |
|-------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------|-----------|---------------------------|-------------------|---------------------------|
| Sample Types -                                                                                                                | Custome<br>Sample Refe |                     | AVGD01.11 |                           |                   | GW1/05                    |
| S - Soil/Solid<br>UNS - Unspecified Solid<br>GW - Ground Water<br>SW - Surface Water<br>LE - Land Leachate                    | AGS Refere             | ence                |           |                           |                   |                           |
| PL - Prepared Leachate<br>PR - Process Water<br>SA - Saline Water<br>TE - Trade Effluent<br>TS - Treated Sewage               | Depth (m)              |                     |           |                           |                   |                           |
| US - Untreated Sewage RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge G - Gas | Container              |                     |           | 500ml Plastic<br>(ALE208) | H2SO4<br>(ALE244) | HNO3 Filtered<br>(ALE204) |
| OTH - Other                                                                                                                   | Sample Ty              | /pe                 | PW        | WS                        | WS                | WS                        |
| Ammoniacal Nitrogen                                                                                                           | All                    | NDPs: 0<br>Tests: 1 |           |                           | X                 |                           |
| Anions by Kone (w)                                                                                                            | All                    | NDPs: 0<br>Tests: 1 |           | X                         |                   |                           |
| Dissolved Metals by ICP-MS                                                                                                    | All                    | NDPs: 0<br>Tests: 2 | X         |                           |                   | X                         |
| pH Value                                                                                                                      | All                    | NDPs: 0<br>Tests: 1 |           | X                         |                   |                           |
| Total Organic and Inorganic<br>Carbon                                                                                         | All                    | NDPs: 0<br>Tests: 1 |           |                           | X                 |                           |



 SDG:
 180908-181

 Location:
 Avoca

Client Reference: 118174 Order Number: 118174-R Report Number: Superseded Report: 472797 472389

| Results Legend # ISO17025 accredited.                                                                                                                            | C                 | ustomer Sample Ref.                      | AVGD01.11                        | GW1/05                           |  |   |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------------------|----------------------------------|----------------------------------|--|---|--|
| m mCERTS accredited. aq Aqueous / settled sample. diss.filit tot.unfilt Total / unfiltered sample. * Subcontracted test. ** % recovery of the surrocate standars |                   | Depth (m)<br>Sample Type<br>Date Sampled | Process Water (PR)<br>07/09/2018 | Surface Water (SW)<br>07/09/2018 |  |   |  |
| ** % recovery of the surrogate standard<br>efficiency of the method. The results<br>compounds within samples aren't co                                           | of individual     | Sampled Time<br>Date Received            | 08/09/2018                       | 08/09/2018                       |  |   |  |
| the recovery (F) Trigger breach confirmed                                                                                                                        |                   | SDG Ref<br>Lab Sample No.(s)             | 180908-181<br>18291861           | 180908-181<br>18291860           |  |   |  |
| 1-5&+§@ Sample deviation (see appendix) d' Dilution Applied                                                                                                      |                   | AGS Reference                            |                                  |                                  |  |   |  |
| Component Organic Carbon, Total                                                                                                                                  | LOD/Uni<br><3 mg/ |                                          |                                  | <3                               |  |   |  |
| Organio Garbon, Total                                                                                                                                            | ŭ                 |                                          |                                  | #                                |  |   |  |
| Ammoniacal Nitrogen as N                                                                                                                                         | <0.2 mg           |                                          |                                  | <0.2<br># d1.0                   |  |   |  |
| Aluminium (diss.filt)                                                                                                                                            | <10 µg            |                                          |                                  | 60500<br># d19.0106              |  |   |  |
| Antimony (diss.filt)                                                                                                                                             | <1 µg/            |                                          |                                  | <6<br>ď6.0                       |  |   |  |
| Arsenic (diss.filt)                                                                                                                                              | <0.5 µg           |                                          |                                  | <3<br># d6.0                     |  |   |  |
| Barium (diss.filt)                                                                                                                                               | <0.2 µg           | /I TM152                                 |                                  | 4.31<br># d6.0                   |  |   |  |
| Cadmium (diss.filt)                                                                                                                                              | <0.08 µį          | g/I TM152                                |                                  | 22<br># d'6.0                    |  |   |  |
| Chromium (diss.filt)                                                                                                                                             | <1 µg/            | TM152                                    |                                  | <6<br># ď6.0                     |  |   |  |
| Cobalt (diss.filt)                                                                                                                                               | <0.5 µg           | /I TM152                                 |                                  | 102<br># ď6.0                    |  |   |  |
| Copper (diss.filt)                                                                                                                                               | <0.3 µg           | /I TM152                                 |                                  | 7160<br># d19.0106               |  |   |  |
| Lead (diss.filt)                                                                                                                                                 | <0.2 µg           | /I TM152                                 |                                  | 15.9<br># ď6.0                   |  |   |  |
| Manganese (diss.filt)                                                                                                                                            | <3 µg/            | TM152                                    |                                  | 4690<br># ď6.0                   |  |   |  |
| Molybdenum (diss.filt)                                                                                                                                           | <3 µg/            | TM152                                    |                                  | <18<br># d6.0                    |  |   |  |
| Nickel (diss.filt)                                                                                                                                               | <0.4 µg           | /I TM152                                 |                                  | 47.4<br># ď6.0                   |  |   |  |
| Vanadium (diss.filt)                                                                                                                                             | <1 µg/            | TM152                                    |                                  | <6<br># ď6.0                     |  |   |  |
| Zinc (diss.filt)                                                                                                                                                 | <1 µg/            | TM152                                    |                                  | 7980<br># ď6.0                   |  |   |  |
| Calcium (Dis.Filt)                                                                                                                                               | <0.2 mg           | /I TM152                                 |                                  | 142<br># ď6.0                    |  |   |  |
| Iron (Dis.Filt)                                                                                                                                                  | <0.019 m          | ıg/l TM152                               |                                  | 1.78<br># ď6.0                   |  |   |  |
| Sulphate                                                                                                                                                         | <2 mg/            | I TM184                                  |                                  | 1090<br># ď5.0                   |  |   |  |
| рН                                                                                                                                                               | <1 pH Ur          | its TM256                                |                                  | 3.76<br>#                        |  |   |  |
| Aluminium (diss.filt)                                                                                                                                            | <10 µg            | /I TM152                                 | 63600<br>ď19.5575                |                                  |  |   |  |
| Antimony (diss.filt)                                                                                                                                             | <1 µg/            | TM152                                    | <6<br>ď6.0                       |                                  |  |   |  |
| Arsenic (diss.filt)                                                                                                                                              | <0.5 µg           | /I TM152                                 | <3<br>ď6.0                       |                                  |  |   |  |
| Barium (diss.filt)                                                                                                                                               | <0.2 µg           |                                          | 4.62<br>ď6.0                     |                                  |  |   |  |
| Cadmium (diss.filt)                                                                                                                                              | <0.08 µ           | g/I TM152                                | 22.6<br>ď6.0                     |                                  |  |   |  |
| Chromium (diss.filt)                                                                                                                                             | <1 µg/            | TM152                                    | <6<br>ď6.0                       |                                  |  |   |  |
| Cobalt (diss.filt)                                                                                                                                               | <0.5 µg           | /I TM152                                 | 105<br>ď6.0                      |                                  |  |   |  |
| Copper (diss.filt)                                                                                                                                               | <0.3 µg           | /I TM152                                 | 7360<br>ď19.5575                 |                                  |  |   |  |
| Lead (diss.filt)                                                                                                                                                 | <0.2 µg           | /I TM152                                 | 19.7<br>ď6.0                     |                                  |  |   |  |
| Manganese (diss.filt)                                                                                                                                            | <3 µg/            | TM152                                    | 4850<br>ď6.0                     |                                  |  |   |  |
| Molybdenum (diss.filt)                                                                                                                                           | <3 µg/            | TM152                                    | <18<br>ď6.0                      |                                  |  |   |  |
| Nickel (diss.filt)                                                                                                                                               | <0.4 µg           | /I TM152                                 | 48.6<br>ď6.0                     |                                  |  |   |  |
|                                                                                                                                                                  |                   |                                          | 40.0                             |                                  |  | - |  |





 SDG:
 180908-181
 Client Reference:
 118174
 Report Number:
 472797

 Location:
 Avoca
 Order Number:
 118174-R2
 Superseded Report:
 472389

| Location                                                                                                                                                 |                              | rivoca                                                   |                                  | er itamberi                      |   |      |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------|----------------------------------|----------------------------------|---|------|--|
| - Populta Larend                                                                                                                                         |                              | Custome Com ! D :                                        | A) 1250 t : :                    | 211112                           | , |      |  |
| Results Legend # ISO17025 accredited. M mCERTS accredited                                                                                                |                              | Customer Sample Ref.                                     | AVGD01.11                        | GW1/05                           |   |      |  |
| M mCERTS accredited.  aq Aqueous / settled sample.                                                                                                       |                              | Danih (m)                                                |                                  |                                  |   |      |  |
| diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.                                                                             |                              | Sample Type                                              | Process Water (PR)<br>07/09/2018 | Surface Water (SW)<br>07/09/2018 |   |      |  |
| * Subcontracted test.  ** % recovery of the surrogate standard                                                                                           | to check the                 | Depth (m)<br>Sample Type<br>Date Sampled<br>Sampled Time | 07/09/2018                       | 07/09/2018                       |   |      |  |
| ** % recovery of the surrogate standard efficiency of the method. The results compounds within samples aren't compounds within samples aren't compounds. | of individual<br>rrected for | Date Received                                            | 08/09/2018                       | 08/09/2018                       |   |      |  |
| the recovery (F) Trigger breach confirmed                                                                                                                |                              | SDG Ref<br>Lab Sample No.(s)                             | 180908-181<br>18291861           | 180908-181<br>18291860           |   |      |  |
| the recovery (F) Trigger breach confirmed 1-5&+§@ Sample deviation (see appendix) d' Dilution Applied                                                    |                              | AGS Reference                                            |                                  |                                  |   |      |  |
| Component                                                                                                                                                | LOD/Un                       |                                                          |                                  |                                  |   |      |  |
| Vanadium (diss.filt)                                                                                                                                     | <1 µg                        | /l TM152                                                 | <6                               |                                  |   |      |  |
| Zinc (diss.filt)                                                                                                                                         | حا                           | /I TM152                                                 | ď6.0<br>8210                     |                                  |   |      |  |
| Ziric (diss.iiit)                                                                                                                                        | <1 µg                        | /I IIVI152                                               | 6210<br>ď6.0                     |                                  |   |      |  |
| Calcium (Dis.Filt)                                                                                                                                       | <0.2 m                       | g/l TM152                                                | 142                              |                                  |   |      |  |
|                                                                                                                                                          |                              |                                                          | ď6.0                             |                                  |   |      |  |
| Iron (Dis.Filt)                                                                                                                                          | <0.019 r                     | mg/l TM152                                               | 2.22                             |                                  |   |      |  |
|                                                                                                                                                          |                              |                                                          | ď6.0                             |                                  |   |      |  |
|                                                                                                                                                          |                              |                                                          |                                  |                                  |   |      |  |
|                                                                                                                                                          |                              |                                                          |                                  |                                  |   |      |  |
|                                                                                                                                                          |                              |                                                          |                                  |                                  |   |      |  |
|                                                                                                                                                          |                              |                                                          |                                  |                                  |   |      |  |
|                                                                                                                                                          |                              |                                                          |                                  |                                  |   |      |  |
|                                                                                                                                                          |                              |                                                          |                                  |                                  |   |      |  |
|                                                                                                                                                          |                              |                                                          |                                  |                                  |   |      |  |
|                                                                                                                                                          |                              |                                                          |                                  |                                  |   |      |  |
|                                                                                                                                                          |                              |                                                          |                                  |                                  |   |      |  |
|                                                                                                                                                          |                              |                                                          |                                  |                                  |   |      |  |
|                                                                                                                                                          |                              |                                                          |                                  |                                  |   |      |  |
|                                                                                                                                                          |                              |                                                          |                                  |                                  |   |      |  |
|                                                                                                                                                          |                              |                                                          |                                  |                                  |   |      |  |
|                                                                                                                                                          |                              |                                                          |                                  |                                  |   |      |  |
|                                                                                                                                                          |                              |                                                          |                                  |                                  |   |      |  |
|                                                                                                                                                          |                              |                                                          |                                  |                                  |   |      |  |
|                                                                                                                                                          |                              |                                                          |                                  |                                  |   |      |  |
|                                                                                                                                                          |                              |                                                          |                                  |                                  |   |      |  |
|                                                                                                                                                          |                              | _                                                        |                                  |                                  |   |      |  |
|                                                                                                                                                          |                              |                                                          |                                  |                                  |   |      |  |
|                                                                                                                                                          |                              |                                                          |                                  |                                  |   |      |  |
|                                                                                                                                                          |                              |                                                          |                                  |                                  |   |      |  |
|                                                                                                                                                          |                              |                                                          |                                  |                                  |   |      |  |
|                                                                                                                                                          |                              |                                                          |                                  |                                  |   |      |  |
|                                                                                                                                                          |                              |                                                          |                                  |                                  |   |      |  |
|                                                                                                                                                          |                              |                                                          |                                  |                                  |   |      |  |
|                                                                                                                                                          |                              |                                                          |                                  | <u> </u>                         |   | <br> |  |
|                                                                                                                                                          |                              |                                                          |                                  |                                  |   |      |  |
|                                                                                                                                                          |                              |                                                          |                                  |                                  |   |      |  |
|                                                                                                                                                          |                              |                                                          |                                  |                                  |   |      |  |
|                                                                                                                                                          |                              | +                                                        |                                  | <del> </del>                     |   |      |  |
|                                                                                                                                                          |                              |                                                          |                                  |                                  |   |      |  |
|                                                                                                                                                          |                              |                                                          |                                  |                                  |   |      |  |
|                                                                                                                                                          |                              |                                                          |                                  |                                  |   |      |  |
|                                                                                                                                                          |                              |                                                          |                                  |                                  |   |      |  |
|                                                                                                                                                          |                              |                                                          |                                  |                                  |   |      |  |
|                                                                                                                                                          |                              |                                                          |                                  |                                  |   |      |  |
|                                                                                                                                                          |                              |                                                          |                                  |                                  |   |      |  |
|                                                                                                                                                          |                              |                                                          |                                  |                                  |   |      |  |
|                                                                                                                                                          |                              |                                                          |                                  |                                  |   |      |  |
|                                                                                                                                                          |                              | _                                                        |                                  | -                                |   |      |  |
|                                                                                                                                                          |                              |                                                          |                                  |                                  |   |      |  |
|                                                                                                                                                          |                              | 1                                                        |                                  |                                  |   |      |  |
|                                                                                                                                                          |                              |                                                          |                                  |                                  |   |      |  |
|                                                                                                                                                          |                              |                                                          |                                  |                                  |   |      |  |
|                                                                                                                                                          |                              |                                                          |                                  |                                  |   |      |  |
|                                                                                                                                                          |                              |                                                          |                                  |                                  |   |      |  |
|                                                                                                                                                          |                              |                                                          |                                  | 1                                |   |      |  |
|                                                                                                                                                          |                              |                                                          |                                  |                                  |   |      |  |



Validated

 SDG:
 180908-181
 Client Reference:
 118174
 Report Number:
 472797

 Location:
 Avoca
 Order Number:
 118174-R2
 Superseded Report:
 472389

**Table of Results - Appendix** 

|           | 14510 01 1                                                                                                                                                  | rocarto / rpportaix                                                                         |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Method No | Reference                                                                                                                                                   | Description                                                                                 |
| TM090     | Method 5310, AWWA/APHA, 20th Ed., 1999 / Modified: US<br>EPA Method 415.1 & 9060                                                                            | S Determination of Total Organic Carbon/Total Inorganic Carbon in Water and Waste Water     |
| TM099     | BS 2690: Part 7:1968 / BS 6068: Part2.11:1984                                                                                                               | Determination of Ammonium in Water Samples using the Kone Analyser                          |
| TM152     | Method 3125B, AWWA/APHA, 20th Ed., 1999                                                                                                                     | Analysis of Aqueous Samples by ICP-MS                                                       |
| TM184     | EPA Methods 325.1 & 325.2,                                                                                                                                  | The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers |
| TM256     | The measurement of Electrical Conductivity and the Laboratory determination of pH Value of Natural, Treated and Wastewaters. HMSO, 1978. ISBN 011 751428 4. | Determination of pH in Water and Leachate using the GLpH pH Meter                           |

NA = not applicable.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden (Method codes TM) or ALS Life Sciences Ltd Aberdeen (Method codes S).

Validated



 SDG:
 180908-181
 Client Reference:
 118174
 Report Number:
 472797

 Location:
 Avoca
 Order Number:
 118174-R2
 Superseded Report:
 472389

# **Test Completion Dates**

| Lab Sample No(s)                   | 18291861    | 18291860      |
|------------------------------------|-------------|---------------|
| Customer Sample Ref.               | AVGD01.11   | GW1/05        |
| AGS Ref.                           |             |               |
| Depth                              |             |               |
| Туре                               | Process     | Surface Water |
| Ammoniacal Nitrogen                |             | 12-Sep-2018   |
| Anions by Kone (w)                 |             | 13-Sep-2018   |
| Dissolved Metals by ICP-MS         | 13-Sep-2018 | 13-Sep-2018   |
| pH Value                           |             | 13-Sep-2018   |
| Total Organic and Inorganic Carbon |             | 13-Sep-2018   |

10:54:52 18/09/2018

Validated



 SDG:
 180908-181

 Location:
 Avoca

Client Reference: 118174 Order Number: 118174-R2 Report Number: Superseded Report: 472797 472389

# **ASSOCIATED AQC DATA**

## Ammoniacal Nitrogen

| Component                | Method Code | QC 1867                       |
|--------------------------|-------------|-------------------------------|
| Ammoniacal Nitrogen as N | TM099       | <b>99.2</b><br>95.98 : 104.95 |

## Anions by Kone (w)

| Component                | Method Code | QC 1881                        |
|--------------------------|-------------|--------------------------------|
| Chloride                 | TM184       | <b>105.0</b><br>92.93 : 115.43 |
| Phosphate (Ortho as PO4) | TM184       |                                |
|                          |             | 96.40 : 108.40                 |
| Sulphate (soluble)       | TM184       | <b>102.8</b><br>90.53 : 113.03 |
| TON as NO3               | TM184       |                                |
|                          |             | 96.26 : 111.21                 |

## Dissolved Metals by ICP-MS

| Component | Method Code | QC 1859        |
|-----------|-------------|----------------|
| Aluminium | TM152       | 101.33         |
|           |             | 94.19 : 114.31 |
| Antimony  | TM152       | 101.5          |
|           |             | 79.80 : 122.00 |
| Arsenic   | TM152       | 99.0           |
|           |             | 90.42 : 111.32 |
| Barium    | TM152       | 99.33          |
|           |             | 90.79 : 113.16 |
| Beryllium | TM152       | 105.0          |
|           |             | 93.25 : 120.04 |
| Bismuth   | TM152       | 99.0           |
|           |             | 94.65 : 117.05 |
| Borate    | TM152       | 103.7          |
|           |             | 88.00 : 112.00 |
| Boron     | TM152       | 103.67         |
|           |             | 86.68 : 117.67 |
| Cadmium   | TM152       | 101.17         |
|           |             | 94.60 : 112.40 |
| Chromium  | TM152       | 99.17          |
|           |             | 93.28 : 110.91 |
| Cobalt    | TM152       | 98.33          |
|           |             | 84.39 : 114.26 |
| Copper    | TM152       | 99.0           |
|           |             | 88.86 : 118.72 |
| Lead      | TM152       | 96.67          |
|           |             | 89.25 : 115.12 |
| Lithium   | TM152       | 102.83         |
|           |             | 89.26 : 119.04 |
| Manganese | TM152       | 100.17         |
|           |             | 94.24 : 112.74 |

Validated



 SDG:
 180908-181
 Client Reference:
 118174
 Report Number:
 472797

 Location:
 Avoca
 Order Number:
 118174-R2
 Superseded Report:
 472389

## Dissolved Metals by ICP-MS

|            | •     | QC 1859                         |
|------------|-------|---------------------------------|
| Molybdenum | TM152 | <b>97.67</b><br>87.00 : 108.89  |
| Nickel     | TM152 | <b>99.17</b><br>92.11 : 110.56  |
| Phosphorus | TM152 | <b>100.33</b><br>90.52 : 115.47 |
| Selenium   | TM152 | <b>99.5</b><br>88.44 : 113.86   |
| Silver     | TM152 | <b>98.67</b><br>87.04 : 107.38  |
| Strontium  | TM152 | <b>99.33</b><br>90.72 : 114.82  |
| Tellurium  | TM152 | <b>95.83</b><br>90.72 : 112.62  |
| Thallium   | TM152 | <b>94.83</b><br>86.08 : 122.48  |
| Titanium   | TM152 | <b>99.67</b><br>92.82 : 118.92  |
| Tungsten   | TM152 | <b>98.5</b><br>78.12 : 132.82   |
| Uranium    | TM152 | <b>99.0</b><br>90.58 : 113.28   |
| Vanadium   | TM152 | <b>98.17</b><br>88.43 : 114.30  |
| Zinc       | TM152 | <b>100.0</b><br>86.52 : 115.27  |

### pH Value

| Component | Method Code | QC 1847                         |
|-----------|-------------|---------------------------------|
| рН        | TM256       | <b>101.08</b><br>99.73 : 102.16 |

### Total Organic and Inorganic Carbon

| Component            | Method Code | QC 1872                         |
|----------------------|-------------|---------------------------------|
| Total Organic Carbon | TM090       | <b>104.83</b><br>97.97 : 110.17 |

The above information details the reference name of the analytical quality control sample (AQC) that has been run with the samples contained in this report for the different methods of analysis.

The figure detailed is the percentage recovery result for the AQC.

The subscript numbers below are the percentage recovery lower control limit (LCL) and the upper control limit (UCL). The percentage recovery result for the AQC should be between these limits to be statistically in control.



SDG: Location: 180908-181 Avoca

Client Reference: Order Number:

118174 118174-R2 Report Number: Superseded Report: 472797 472389

Appendix

# General

- for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.
- 2. Samples will be run in duplicate upon request, but an additional charge may be incurred
- 3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.
- 4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised
- 6. When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.
- 7. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate
- 8. If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.
- 9. NDP No determination possible due to insufficient/unsuitable sample.
- 10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals - total metals must be requested separately
- 11. Results relate only to the items tested.
- 12. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content
- 13. Surrogate recoveries Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect
- 14. Product analyses Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.
- 15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).
- 16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 15).
- 17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- 19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.
- 20. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.

- 1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except 21. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
  - 22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.
  - 23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.
  - 24. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

## Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

| 1 | Container with Headspace provided for volatiles analysis       |
|---|----------------------------------------------------------------|
| 2 | Incorrect container received                                   |
| 3 | Deviation from method                                          |
| 4 | Holding time exceeded before sample received                   |
| 5 | Samples exceeded holding time before presevation was performed |
| § | Sampled on date not provided                                   |
| • | Sample holding time exceeded in laboratory                     |
| @ | Sample holding time exceeded due to sampled on date            |
| & | Sample Holding Time exceeded - Late arrival of instructions.   |

### Asbestos

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

| Asbe stos Type            | Common Name     |
|---------------------------|-----------------|
| Chrysof le                | White Asbests   |
| Amosite                   | Brow n Asbestos |
| Cro d dolite              | Blue Asbe stos  |
| Fibrous Act nolite        | -               |
| Fib to us Anthop hyll ite | -               |
| Fibrous Tremolite         | -               |

#### Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.



Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside

> CH5 3US Tel: (01244) 528700 Fax: (01244) 528701

email: hawardencustomerservices@alsglobal.com Website: www.alsenvironmental.co.uk

CDM Smith 15 Wentworth Elbana Villas Dublin Dublin 2 D02 WK10

Attention: Laura Foley

## **CERTIFICATE OF ANALYSIS**

Date:17 October 2018Customer:D\_CDMSMITH\_DUBSample Delivery Group (SDG):180908-179

Your Reference: 118174
Location: Avoca
Report No: 477153

This report has been revised and directly supersedes 472803 in its entirety.

We received 7 samples on Saturday September 08, 2018 and 7 of these samples were scheduled for analysis which was completed on Tuesday September 18, 2018. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden (Method codes TM) or ALS Life Sciences Ltd Aberdeen (Method codes S).

Approved By:

Sonia McWhan
Operations Manager







Validated

 SDG:
 180908-179
 Client Reference:
 118174
 Report Number:
 477153

 Location:
 Avoca
 Order Number:
 118174--R2
 Superseded Report:
 472803

# **Received Sample Overview**

| Lab Sample No(s) | Customer Sample Ref. | AGS Ref. | Depth (m) | Sampled Date |
|------------------|----------------------|----------|-----------|--------------|
| 18291738         | AVDB01.11            |          |           | 06/09/2018   |
| 18291739         | AVSR01.11            |          |           | 06/09/2018   |
| 18291741         | GW2-05               |          |           | 06/09/2018   |
| 18291737         | MWDA1                |          |           | 06/09/2018   |
| 18291742         | MWET1                |          |           | 06/09/2018   |
| 18291743         | MWET2                |          |           | 06/09/2018   |
| 18291736         | MWPF1                |          |           | 06/09/2018   |

Maximum Sample/Coolbox Temperature (°C):

ISO5667-3 Water quality - Sampling - Part3 -

During Transportation samples shall be stored in a cooling device capable of maintaining a temperature of (5±3) C.

14.2

ALS have data which show that a cool box with 4 frozen icepacks is capable of maintaining pre-chilled samples at a temperature of  $(5\pm3)$ °C for a period of up to 24hrs.

Only received samples which have had analysis scheduled will be shown on the following pages.

472803

Χ

### **CERTIFICATE OF ANALYSIS**

SDG: 180908-179 Client Reference: 118174 Report Number: 477153 Location: Avoca Order Number: 118174--R2 Superseded Report: **Results Legend** 18291741 18291736 8291739 18291742 18291743 8291738 Lab Sample No(s) X Test No Determination Possible AVDB01.1 AVSR01.11 Customer GW2-05 MWET1 MWET2 MWPF1 Sample Reference Sample Types -S - Soil/Solid UNS - Unspecified Solid GW - Ground Water **AGS Reference** SW - Surface Water LE - Land Leachate PL - Prepared Leachate PR - Process Water SA - Saline Water Depth (m) TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage RE - Recreational Water 500ml Plastic (ALE208) HNO3 Filtered (ALE204) H2SO4 (ALE244) HNO3 Filtered (ALE204) H2SO4 (ALE244) 500ml Plastic (ALE208) HNO3 Filtered (ALE204) 500ml Plastic (ALE208) HNO3 Filtered (ALE204) HNO3 Filtered (ALE204) 500ml Plastic (ALE208) HNO3 Filtered (ALE204) H2SO4 (ALE244) H2SO4 (ALE244) DW - Drinking Water Non-regulatory UNL - Unspecified Liquid Container SL - Sludge G - Gas OTH - Other Sample Type WS WS WS WS WS WS WS WS WS ₹ WS WS WS ₹ Ammoniacal Nitrogen All NDPs: 0 Tests: 4 X Х Χ X Anions by Kone (w) All NDPs: 0 Tests: 4 Χ X X X Dissolved Metals by ICP-MS All NDPs: 0 Tests: 6

Χ

Χ

X

X

X

X

X

X

Х

NDPs: 0 Tests: 4

pH Value

All



SDG: 180908-179 Location: Avoca

Client Reference: 118174 Order Number: 118174-

118174--R2

Report Number: Superseded Report:

477153 472803

| March   Marc                                                                                                                          |                                         |             |               |            |            |            |              |            |            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------|---------------|------------|------------|------------|--------------|------------|------------|
| Second Control                                                                                                                          | M mCERTS accredited.                    | С           | ·             | AVDB01.11  | AVSR01.11  | GW2-05     | MWET1        | MWET2      | MWPF1      |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tot.unfilt Total / unfiltered sample.   |             | Sample Type   |            |            |            |              |            |            |
| Component                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | check the efficiency of the method      | . The       |               |            | 08/09/2018 | 08/09/2018 | . 08/09/2018 | 08/09/2018 | 08/09/2018 |
| Table   Commented   Commente                                                                                                                          |                                         |             | SDG Ref       | 180908-179 | 180908-179 | 180908-179 | 180908-179   | 180908-179 | 180908-179 |
| Ammoneade Minogene ann   12 mg/l   10499   10499   10499   144700   177000   177000   1490   1490   141000   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490   1490                                                                                                                         | 1-5&+§@ Sample deviation (see appendix) |             | AGS Reference | 18291738   | 18291739   | 18291741   | 18291742     | 18291743   | 18291736   |
| Allerinan   Alle                                                                                                                          |                                         |             | _             |            |            |            |              |            |            |
| Averance (describ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Aluminium (diss.filt)                   | <10 µg/l    | TM152         |            |            | 42700      | 170000       | <60        | 241        |
| Manumer   Manu                                                                                                                          | Antimony (diss.filt)                    | <1 µg/l     | TM152         |            |            |            |              |            |            |
| Battum (des fin)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Arsenic (diss.filt)                     | <0.5 µg/l   | TM152         |            |            |            |              |            |            |
| Cotamin (diss filt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Barium (diss.filt)                      | <0.2 µg/l   | TM152         |            |            | 1.35       | 4.32         | 10.9       | 7.36       |
| Control (des fit)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cadmium (diss.filt)                     | <0.08 µg/l  | TM152         |            |            | 14.3       | 30.6         | 1.66       | 0.348      |
| Cabart (class fit)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Chromium (diss.filt)                    | <1 µg/l     | TM152         |            |            | 1.17       | 9.59         | <6         | <1         |
| Copper (siss fit)   Copp                                                                                                                          | Cobalt (diss.filt)                      | <0.5 µg/l   | TM152         |            |            | 75.4       | 259          | 108        | <0.5       |
| Lead (diss.RIII)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Copper (diss.filt)                      | <0.3 µg/l   | TM152         |            |            | 5870       | 10600        | <1.8       | 36.2       |
| Manganese (diss.fit)         4 Supil         TM152         B         3880         g         9510         g         195         g           Molydenum (diss.fit)         4 July         TM152         B         3390         g         18         g         4         3         g         18         g         4         3         g         18         g         4         0.516         g         g         3         123         g         128         g         0.516         g         g         123         g         128         g         0.516         g         g         123         g         128         g         0.516         g         2         2         40.516         g         1.71         g         0.516         g         2         2         0.516         g         2         2.02         3         3.78         g         1.71         g         3.78         g         0.02         g         3.78         g         1.72         g         2.02         g         3.78         g         1.72         g         3.78         g         1.72         g         3.78         g         1.72         g         3.72         g         1.72 <t< td=""><td>Lead (diss.filt)</td><td>&lt;0.2 µg/l</td><td>TM152</td><td></td><td></td><td>0.553</td><td>87.6</td><td>&lt;1.2</td><td>&lt;0.2</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lead (diss.filt)                        | <0.2 µg/l   | TM152         |            |            | 0.553      | 87.6         | <1.2       | <0.2       |
| Molybedenum (diss filt)   C3 µg1   TM152   C1   C2   C3 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Manganese (diss.filt)                   | <3 µg/l     | TM152         |            |            | 3880       | 9510         | 30200      | 19.5       |
| Noted (des fill)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Molybdenum (diss.filt)                  | <3 µg/l     | TM152         |            |            | 3.99       | <18          | <18        | <3         |
| Vanadum (diss.fit)         -1 µg1         TM152         -1         -1         -6         -6         -6         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Nickel (diss.filt)                      | <0.4 µg/l   | TM152         |            |            | 35.7       | 123          | 12.8       | 0.516      |
| Zinc (diss fill)         1 µgl         TM152         6720         #         11200         #         4830         #         #           Iron (Dis Fill)         < 0.019 mgl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Vanadium (diss.filt)                    | <1 µg/l     | TM152         |            |            | <1         | <6           | <6         | <1         |
| Fort   Color Fith   Color Fit                                                                                                                          | Zinc (diss.filt)                        | <1 µg/l     | TM152         |            |            | 6720       | 11200        | 4830       | 37.8       |
| Sulphate   \$\circ 2 \text{mg/l}   \$\text{TM184}   \$\text{TM266}   \$\text{TM184}   \$\text{TM266}   \$\text{TM184}   \$\text{TM266}   \$\text{TM152}   \$TM1 | Iron (Dis.Filt)                         | <0.019 mg/l | TM152         |            |            | 0.198      | 107          | 89.3       | 0.0219     |
| pH         < 1 pH Units         TM266         3.99         3.76         5.99         5.39         #           Aluminium (diss.filt)         <10 µgl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sulphate                                | <2 mg/l     | TM184         |            |            | 857        | 1690         | 2060       | 27.6       |
| Aluminium (diss.filt)         <10 μg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | рН                                      | <1 pH Units | TM256         |            |            | 3.99       | 3.76         | 5.99       | 5.39       |
| Arsenic (diss.filt)         <0.5 μg/l         TM152         <0.5         584 </td <td>Aluminium (diss.filt)</td> <td>&lt;10 µg/l</td> <td>TM152</td> <td>17.6</td> <td>1570</td> <td>#</td> <td>π</td> <td>π</td> <td>"</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Aluminium (diss.filt)                   | <10 µg/l    | TM152         | 17.6       | 1570       | #          | π            | π          | "          |
| Barium (diss.filt)         < 0.2 μg/l         TM152         < 0.2         1930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Antimony (diss.filt)                    | <1 µg/l     | TM152         | <1         | 323        |            |              |            |            |
| Cadmium (diss.filt)       <0.08 μg/l       TM152       <0.08       739 <td>Arsenic (diss.filt)</td> <td>&lt;0.5 µg/l</td> <td>TM152</td> <td>&lt;0.5</td> <td>584</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Arsenic (diss.filt)                     | <0.5 µg/l   | TM152         | <0.5       | 584        |            |              |            |            |
| Chromium (diss.filt)         <1 µg/l         TM152         <1         429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Barium (diss.filt)                      | <0.2 µg/l   | TM152         | <0.2       | 1930       |            |              |            |            |
| Cobalt (diss.filt)       <0.5 μg/l       TM152       <0.5       487                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cadmium (diss.filt)                     | <0.08 µg/l  | TM152         | <0.08      | 739        |            |              |            |            |
| Copper (diss.filt)         < 0.3 µg/l         TM152         1.43         437 <td>Chromium (diss.filt)</td> <td>&lt;1 µg/l</td> <td>TM152</td> <td>&lt;1</td> <td>429</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Chromium (diss.filt)                    | <1 µg/l     | TM152         | <1         | 429        |            |              |            |            |
| Lead (diss.filt)       <0.2 μg/l       TM152       0.344       597                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cobalt (diss.filt)                      | <0.5 µg/l   | TM152         | <0.5       | 487        |            |              |            |            |
| Manganese (diss.filt)         <3 μg/l         TM152         3.32         193 </td <td>Copper (diss.filt)</td> <td>&lt;0.3 µg/l</td> <td>TM152</td> <td>1.43</td> <td>437</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Copper (diss.filt)                      | <0.3 µg/l   | TM152         | 1.43       | 437        |            |              |            |            |
| Molybdenum (diss.filt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lead (diss.filt)                        | <0.2 µg/l   | TM152         | 0.344      | 597        |            |              |            |            |
| Nickel (diss.filt)         < 0.4 µg/l         TM152         < 0.4         446 </td <td>Manganese (diss.filt)</td> <td>&lt;3 µg/l</td> <td>TM152</td> <td>3.32</td> <td>193</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Manganese (diss.filt)                   | <3 µg/l     | TM152         | 3.32       | 193        |            |              |            |            |
| Vanadium (diss.filt)     <1 μg/l     TM152     <1     1360       Zinc (diss.filt)     <1 μg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Molybdenum (diss.filt)                  | <3 µg/l     | TM152         | <3         | 102        |            |              |            |            |
| Zinc (diss.filt) <1 μg/l TM152 2.45 1800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Nickel (diss.filt)                      | <0.4 µg/l   | TM152         | <0.4       | 446        |            |              |            |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Vanadium (diss.filt)                    | <1 µg/l     | TM152         | <1         | 1360       |            |              |            |            |
| Iron (Dis.Filt) <0.019 mg/l TM152 0.0435 2.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Zinc (diss.filt)                        | <1 µg/l     | TM152         | 2.45       | 1800       |            |              |            |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Iron (Dis.Filt)                         | <0.019 mg/l | TM152         | 0.0435     | 2.49       |            |              |            |            |





 SDG:
 180908-179
 Client Reference:
 118174
 Report Number:
 477153

 Location:
 Avoca
 Order Number:
 118174--R2
 Superseded Report:
 472803

## **Table of Results - Appendix**

| Method No | Reference                                                                                                                                                         | Description                                                                                    |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| TM099     | BS 2690: Part 7:1968 / BS 6068: Part2.11:1984                                                                                                                     | Determination of Ammonium in Water Samples using the Kone Analyser                             |
| TM152     | Method 3125B, AWWA/APHA, 20th Ed., 1999                                                                                                                           | Analysis of Aqueous Samples by ICP-MS                                                          |
| TM184     | EPA Methods 325.1 & 325.2,                                                                                                                                        | The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric<br>Analysers |
| TM256     | The measurement of Electrical Conductivity and the<br>Laboratory determination of pH Value of Natural, Treated<br>and Wastewaters. HMSO, 1978. ISBN 011 751428 4. | Determination of pH in Water and Leachate using the GLpH pH Meter                              |

NA = not applicable.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden (Method codes TM) or ALS Life Sciences Ltd Aberdeen (Method codes S).

## **CERTIFICATE OF ANALYSIS**



 SDG:
 180908-179
 Client Reference:
 118174
 Report Number:
 477153

 Location:
 Avoca
 Order Number:
 118174--R2
 Superseded Report:
 472803

## **Test Completion Dates**

| Lab Sample No(s)           | 18291738      | 18291739      | 18291741      | 18291742      | 18291743      | 18291736      |
|----------------------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Customer Sample Ref.       | AVDB01.11     | AVSR01.11     | GW2-05        | MWET1         | MWET2         | MWPF1         |
| AGS Ref.                   |               |               |               |               |               |               |
| Depth                      |               |               |               |               |               |               |
| Туре                       | Process Water | Process Water | Surface Water | Surface Water | Surface Water | Surface Water |
| Ammoniacal Nitrogen        |               |               | 14-Sep-2018   | 14-Sep-2018   | 14-Sep-2018   | 14-Sep-2018   |
| Anions by Kone (w)         |               |               | 13-Sep-2018   | 17-Sep-2018   | 17-Sep-2018   | 17-Sep-2018   |
| Dissolved Metals by ICP-MS | 17-Sep-2018   | 18-Sep-2018   | 18-Sep-2018   | 18-Sep-2018   | 18-Sep-2018   | 17-Sep-2018   |
| pH Value                   |               |               | 14-Sep-2018   | 14-Sep-2018   | 14-Sep-2018   | 14-Sep-2018   |



 SDG:
 180908-179

 Location:
 Avoca

Client Reference: 118174 Order Number: 118174--R2 Report Number: Superseded Report: 477153 472803

## **ASSOCIATED AQC DATA**

## Ammoniacal Nitrogen

| Component                | Method Code | QC 1837                       | QC 1839                       |
|--------------------------|-------------|-------------------------------|-------------------------------|
| Ammoniacal Nitrogen as N | TM099       | <b>98.0</b><br>95.98 : 104.95 | <b>97.2</b><br>95.98 : 104.95 |

## Anions by Kone (w)

| Component                | Method Code | QC 1881        | QC 1887        |
|--------------------------|-------------|----------------|----------------|
| Chloride                 | TM184       | 105.0          | 101.0          |
|                          |             | 92.93 : 115.43 | 92.93 : 115.43 |
| Phosphate (Ortho as PO4) | TM184       |                |                |
|                          |             | 96.40 : 108.40 | 96.40 : 108.40 |
| Sulphate (soluble)       | TM184       | 102.8          | 100.8          |
|                          |             | 90.53 : 113.03 | 90.53 : 113.03 |
| TON as NO3               | TM184       |                | 98.0           |
|                          |             | 96.26 : 111.21 | 96.26 : 111.21 |

## Dissolved Metals by ICP-MS

| Component | Method Code | QC 1867                         | QC 1896                         | QC 1842                         |
|-----------|-------------|---------------------------------|---------------------------------|---------------------------------|
| Aluminium | TM152       | <b>104.0</b><br>94.19 : 114.31  | <b>106.67</b><br>94.19 : 114.31 | <b>104.0</b><br>94.19 : 114.31  |
| Antimony  | TM152       | <b>106.0</b><br>79.80 : 122.00  | <b>106.67</b><br>79.80 : 122.00 | <b>106.5</b><br>79.80 : 122.00  |
| Arsenic   | TM152       | <b>102.0</b><br>90.42 : 111.32  | <b>102.5</b><br>90.42 : 111.32  | <b>103.0</b><br>90.42 : 111.32  |
| Barium    | TM152       | <b>105.5</b><br>90.79 : 113.16  | <b>105.83</b><br>90.79 : 113.16 | <b>106.0</b><br>90.79 : 113.16  |
| Beryllium | TM152       | <b>110.0</b><br>93.25 : 120.04  | <b>110.83</b><br>93.25 : 120.04 | <b>104.33</b><br>93.25 : 120.04 |
| Bismuth   | TM152       | <b>105.67</b><br>94.65 : 117.05 | <b>108.17</b><br>94.65 : 117.05 | <b>108.5</b><br>94.65 : 117.05  |
| Borate    | TM152       | <b>108.02</b><br>88.00 : 112.00 | <b>111.11</b><br>88.00 : 112.00 | <b>103.7</b><br>88.00 : 112.00  |
| Boron     | TM152       | <b>108.0</b><br>86.68 : 117.67  | <b>111.0</b><br>86.68 : 117.67  | <b>103.67</b><br>86.68 : 117.67 |
| Cadmium   | TM152       | <b>106.5</b><br>94.60 : 112.40  | <b>106.67</b><br>94.60 : 112.40 | <b>104.83</b><br>94.60 : 112.40 |
| Calcium   | TM152       |                                 | <b>105.6</b><br>88.64 : 126.35  |                                 |
| Chromium  | TM152       | <b>104.0</b><br>93.28 : 110.91  | <b>106.33</b><br>93.28 : 110.91 | <b>105.67</b><br>93.28 : 110.91 |
| Cobalt    | TM152       | <b>101.5</b><br>84.39 : 114.26  | <b>104.33</b><br>84.39 : 114.26 | <b>105.17</b><br>84.39 : 114.26 |
| Copper    | TM152       | <b>104.33</b><br>88.86 : 118.72 | <b>107.67</b><br>88.86 : 118.72 | <b>107.67</b><br>88.86 : 118.72 |
| Iron      | TM152       |                                 | <b>106.67</b><br>92.00 : 113.00 |                                 |
| Lead      | TM152       | <b>101.83</b><br>89.25 : 115.12 | <b>103.83</b><br>89.25 : 115.12 | <b>104.5</b><br>89.25 : 115.12  |

#### Validated

# **CERTIFICATE OF ANALYSIS**



 SDG:
 180908-179

 Location:
 Avoca

Client Reference: 118174 Order Number: 118174--R2 Report Number: Superseded Report: 477153 472803

# Dissolved Metals by ICP-MS

|            |       | QC 1867        | QC 1896        | QC 1842        |
|------------|-------|----------------|----------------|----------------|
| Lithium    | TM152 | 104.5          | 111.33         | 103.67         |
|            |       | 89.26 : 119.04 | 89.26 : 119.04 | 89.26 : 119.04 |
| Magnesium  | TM152 |                | 103.2          |                |
|            |       |                | 86.35 : 113.36 |                |
| Manganese  | TM152 | 102.67         | 107.5          | 106.17         |
|            |       | 94.24 : 112.74 | 94.24 : 112.74 | 94.24 : 112.74 |
| Molybdenum | TM152 | 104.5          | 103.67         | 105.17         |
|            |       | 87.00 : 108.89 | 87.00 : 108.89 | 87.00 : 108.89 |
| Nickel     | TM152 | 104.33         | 107.67         | 105.83         |
|            |       | 92.11 : 110.56 | 92.11 : 110.56 | 92.11 : 110.56 |
| Phosphorus | TM152 | 100.67         | 105.67         | 104.0          |
|            |       | 90.52 : 115.47 | 90.52 : 115.47 | 90.52 : 115.47 |
| Potassium  | TM152 |                | 105.33         |                |
|            |       |                | 90.23 : 109.87 |                |
| Selenium   | TM152 | 102.83         | 102.5          | 101.67         |
|            |       | 88.44 : 113.86 | 88.44 : 113.86 | 88.44 : 113.86 |
| Silver     | TM152 | 104.83         | 105.0          | 104.33         |
|            |       | 87.04 : 107.38 | 87.04 : 107.38 | 87.04 : 107.38 |
| Sodium     | TM152 |                | 104.0          |                |
|            |       |                | 92.68 : 108.68 |                |
| Strontium  | TM152 | 101.33         | 104.33         | 104.0          |
|            |       | 90.72 : 114.82 | 90.72 : 114.82 | 90.72 : 114.82 |
| Tellurium  | TM152 | 100.83         | 103.5          | 102.33         |
|            |       | 90.72 : 112.62 | 90.72 : 112.62 | 90.72 : 112.62 |
| Thallium   | TM152 | 102.83         | 109.5          | 105.83         |
|            |       | 86.08 : 122.48 | 86.08 : 122.48 | 86.08 : 122.48 |
| Tin        | TM152 |                | 106.0          |                |
|            |       |                | 91.00 : 109.00 |                |
| Titanium   | TM152 | 105.83         | 106.0          | 106.0          |
|            |       | 92.82 : 118.92 | 92.82 : 118.92 | 92.82 : 118.92 |
| Tungsten   | TM152 | 105.5          | 107.83         | 105.5          |
|            |       | 78.12 : 132.82 | 78.12 : 132.82 | 78.12 : 132.82 |
| Uranium    | TM152 | 105.67         | 107.67         | 105.5          |
|            |       | 90.58 : 113.28 | 90.58 : 113.28 | 90.58 : 113.28 |
| Vanadium   | TM152 | 105.0          | 106.33         | 107.67         |
|            |       | 88.43 : 114.30 | 88.43 : 114.30 | 88.43 : 114.30 |
| Zinc       | TM152 | 106.67         | 107.67         | 107.67         |
|            |       | 86.52 : 115.27 | 86.52 : 115.27 | 86.52 : 115.27 |

# pH Value

| Component | Method Code | QC 1879                         |
|-----------|-------------|---------------------------------|
| рН        | TM256       | <b>100.81</b><br>99.19 : 102.43 |

The above information details the reference name of the analytical quality control sample (AQC) that has been run with the samples contained in this report for the different methods of analysis.

The figure detailed is the percentage recovery result for the AQC.

The subscript numbers below are the percentage recovery lower control limit (LCL) and the upper control limit (UCL). The percentage recovery result for the AQC should be between these limits to be statistically in control.

#### **CERTIFICATE OF ANALYSIS**



SDG: 180908-179 Client Reference: 118174 477153 Report Number: 118174--R2 Superseded Report: Location: Avoca Order Number: 472803

Appendix

# General

- 1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except 21. For the BSEN 12457-3 two batch process to allow the cumulative release to be for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.
- 2. Samples will be run in duplicate upon request, but an additional charge may be incurred.
- 3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.
- 4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised
- 6. When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.
- 7. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.
- 8. If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.
- 9. NDP No determination possible due to insufficient/unsuitable sample.
- 10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals - total metals must be requested separately
- 11. Results relate only to the items tested.
- 12. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected
- 13. Surrogate recoveries Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect
- 14. Product analyses Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors
- 15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).
- 16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 15).
- Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- 19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.
- 20. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.

- calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
- 22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.
- 23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised
- 24. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

# Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

| 1 | Container with Headspace provided for volatiles analysis       |
|---|----------------------------------------------------------------|
| 2 | Incorrect container received                                   |
| 3 | Deviation from method                                          |
| 4 | Holding time exceeded before sample received                   |
| 5 | Samples exceeded holding time before presevation was performed |
| § | Sampled on date not provided                                   |
| • | Sample holding time exceeded in laboratory                     |
| @ | Sample holding time exceeded due to sampled on date            |
| & | Sample Holding Time exceeded - Late arrival of instructions.   |

# Asbestos

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

| Asbe stos Type            | Common Name    |
|---------------------------|----------------|
| Chrysof le                | White Asbesbs  |
| Amosite                   | Brown Asbestos |
| Cro d dolite              | Blue Asbe stos |
| Fibrous Act nolite        | -              |
| Fib to us Anthop hyll ite | -              |
| Fibrous Tremolite         | -              |

#### Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.



Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US

Tel: (01244) 528700 Fax: (01244) 528701

email: hawardencustomerservices@alsglobal.com Website: www.alsenvironmental.co.uk

CDM Smith 15 Wentworth Elbana Villas Dublin Dublin 2 D02 WK10

Attention: Laura Foley

# **CERTIFICATE OF ANALYSIS**

Date:24 September 2018Customer:D CDMSMITH DUB

 Sample Delivery Group (SDG):
 180918-53

 Your Reference:
 118174

 Location:
 Avoca

 Report No:
 473772

We received 10 samples on Tuesday September 18, 2018 and 10 of these samples were scheduled for analysis which was completed on Monday September 24, 2018. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden (Method codes TM) or ALS Life Sciences Ltd Aberdeen (Method codes S).


Approved By:

Sonia McWhan
Operations Manager





Validated





 SDG:
 180918-53
 Client Reference:
 118174
 Report Number:
 473772

 Location:
 Avoca
 Order Number:
 118174.2.3.0
 Superseded Report:

# **Received Sample Overview**

| Lab Sample No(s) | Customer Sample Ref. | AGS Ref. | Depth (m) | Sampled Date |
|------------------|----------------------|----------|-----------|--------------|
| 18349767         | MWDA1                |          |           | 13/09/2018   |
| 18349768         | MWDA2                |          |           | 13/09/2018   |
| 18349770         | SMDB02.11            |          |           | 13/09/2018   |
| 18349769         | SMSD03.11            |          |           | 13/09/2018   |
| 18349761         | SW1-SM               |          |           | 13/09/2018   |
| 18349763         | SW3-SM               |          |           | 13/09/2018   |
| 18349765         | SW5-SM               |          |           | 13/09/2018   |
| 18349766         | SW6-SM               |          |           | 13/09/2018   |
| 18349764         | SW4-SM-GA            |          |           | 13/09/2018   |
| 18349762         | SW2-SM-SOUTH         |          |           | 13/09/2018   |

Maximum Sample/Coolbox Temperature (°C):

18.2

ISO5667-3 Water quality - Sampling - Part3 -

During Transportation samples shall be stored in a cooling device capable of maintaining a temperature of (5±3)°C.

ALS have data which show that a cool box with 4 frozen icepacks is capable of maintaining pre-chilled samples at a temperature of (5±3)°C for a period of up to 24hrs.

Only received samples which have had analysis scheduled will be shown on the following pages.

Validated

# **CERTIFICATE OF ANALYSIS**

| 1 |     |
|---|-----|
|   | 218 |

SDG: 118174 473772 180918-53 Client Reference: Report Number: 118174.2.3.0 Location: Avoca Order Number: Superseded Report: Results Legend 18349767 18349768 18349770 18349769 18349761 18349763 18349765 18349766 Lab Sample No(s) X Test No Determination Possible SMDB02.11 SMSD03.11 Customer MWDA2 MWDA1 SW1-SM SW3-SM SW5-SM SW6-SM Sample Reference Sample Types -S - Soil/Solid UNS - Unspecified Solid GW - Ground Water **AGS Reference** SW - Surface Water LE - Land Leachate PL - Prepared Leachate PR - Process Water SA - Saline Water Depth (m) TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage RE - Recreational Water 500ml Plastic (ALE208) HNO3 Filtered (ALE204) H2SO4 (ALE244) H2SO4 (ALE244) H2SO4 (ALE244) H2SO4 (ALE244) H2SO4 (ALE244) 500ml Plastic (ALE208) HNO3 Filtered (ALE204) HNO3 Filtered (ALE204) HNO3 Filtered (ALE204) H2SO4 (ALE244) 500ml Plastic (ALE208) HNO3 Filtered (ALE204) 500ml Plastic (ALE208) HNO3 Filtered (ALE204) HNO3 Filtered (ALE204) 500ml Plastic (ALE208) 500ml Plastic (ALE208) DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge Container G - Gas OTH - Other GW GW G/N WS WS WS WS Sample Type GW GW GΜ PΜ P۷ WS WS WS WS WS WS WS Ammoniacal Nitrogen All NDPs: 0 Tests: 8 X X Χ X X X Anions by Kone (w) All NDPs: 0 Tests: 8 X X X X X X Dissolved Metals by ICP-MS All NDPs: 0 Tests: 10 Х Х Х Х X Х X pH Value All NDPs: 0 Tests: 8 X X X X X X Total Organic and Inorganic Carbon All NDPs: 0 Tests: 5 Χ Χ Χ X

| (        |   |              |    | (ALE204)       |              |          |
|----------|---|--------------|----|----------------|--------------|----------|
|          |   |              | WS | HNO3 Filtered  | SW6-SM       | 18349766 |
| )        | > |              |    | (ALE208)       |              |          |
| (        | ( |              | WS | 500ml Plastic  |              |          |
|          |   | <br><b>X</b> |    |                |              |          |
|          |   |              | WS | H2SO4 (ALE244) |              |          |
| )        |   |              |    | (ALE204)       |              |          |
| (        |   |              | WS | HNO3 Filtered  | SW4-SM-GA    | 18349764 |
| )        | ) |              |    | (ALE208)       |              |          |
| <b>(</b> | ( |              | WS | 500ml Plastic  |              |          |
|          |   | <br>)        |    |                |              |          |
|          |   | ·            | WS | H2SO4 (ALE244) |              |          |
| )        |   |              |    | (ALE204)       |              |          |
| (        |   |              | WS |                | SW2-SM-SOUTH | 18349762 |

473772

# **CERTIFICATE OF ANALYSIS**



SDG: 180918-53 Client Reference: 118174 Report Number: Location: Avoca Order Number: 118174.2.3.0 Superseded Report:

| Results Legend                                                                                      |                                 | Customer Sample Ref.                     | MWDA1                           | MWDA2                           | SMDB02.11                        | SMSD03.11                        | SW1-SM                           | SW3-SM                           |
|-----------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------|---------------------------------|---------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| # ISO17025 accredited.  M mCERTS accredited.  aq Aqueous / settled sample.                          |                                 | Donth (m)                                |                                 |                                 |                                  |                                  |                                  |                                  |
| diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.  * Subcontracted test. |                                 | Depth (m)<br>Sample Type<br>Date Sampled | Ground Water (GW)<br>13/09/2018 | Ground Water (GW)<br>13/09/2018 | Process Water (PR)<br>13/09/2018 | Process Water (PR)<br>13/09/2018 | Surface Water (SW)<br>13/09/2018 | Surface Water (SW)<br>13/09/2018 |
| ** % recovery of the surrogate standa check the efficiency of the method.                           |                                 | Sample Time Date Received                | 18/09/2018                      | 18/09/2018                      | 18/09/2018                       | 18/09/2018                       | 18/09/2018                       | 18/09/2018                       |
| results of individual compounds w<br>samples aren't corrected for the re                            |                                 | SDG Ref                                  | 180918-53<br>18349767           | 180918-53<br>18349768           | 180918-53<br>18349770            | 180918-53<br>18349769            | 180918-53<br>18349761            | 180918-53<br>18349763            |
| (F) Trigger breach confirmed  1-5&+§@ Sample deviation (see appendix)                               | 1.00///                         | Lab Sample No.(s)  AGS Reference         | 100-3707                        | 10045700                        | 10045770                         | 100-10103                        | 10043701                         | 10045700                         |
| Organic Carbon, Total                                                                               | <pre>LOD/Units &lt;3 mg/l</pre> | Method<br>TM090                          |                                 |                                 |                                  |                                  | <3                               | <3                               |
| Ammoniacal Nitrogen as N                                                                            | <0.2 mg/l                       | TM099                                    | 0.434                           | 0.265                           |                                  |                                  | <0.2                             | <0.2                             |
| Aluminium (diss.filt)                                                                               | <10 µg/l                        | TM152                                    | 70300                           | 28300<br>#                      |                                  |                                  | #<br><10                         | #<br><10                         |
| Antimony (diss.filt)                                                                                | <1 μg/l                         | TM152                                    | #<br><6                         | #<br><6                         |                                  |                                  | #<br><1                          | #<br><1                          |
| Arsenic (diss.filt)                                                                                 | <0.5 µg/l                       | TM152                                    | 4.27                            | <3                              |                                  |                                  | 0.71                             | <0.5                             |
|                                                                                                     |                                 |                                          | #                               | #                               |                                  |                                  | #                                | #                                |
| Barium (diss.filt)                                                                                  | <0.2 µg/l                       | TM152                                    | <1.2<br>#                       | <1.2<br>#                       |                                  |                                  | 37.5<br>#                        | 34<br>#                          |
| Cadmium (diss.filt)                                                                                 | <0.08 µg/l                      | TM152                                    | 69.2<br>#                       | 79<br>#                         |                                  |                                  | <0.08<br>#                       | <0.08<br>#                       |
| Chromium (diss.filt)                                                                                | <1 µg/l                         | TM152                                    | <6<br>#                         | <6<br>#                         |                                  |                                  | <1<br>#                          | <1<br>#                          |
| Cobalt (diss.filt)                                                                                  | <0.5 µg/l                       | TM152                                    | 93 #                            | 214<br>#                        |                                  |                                  | <0.5<br>#                        | <0.5<br>#                        |
| Copper (diss.filt)                                                                                  | <0.3 µg/l                       | TM152                                    | 2620<br>#                       | 2370<br>#                       |                                  |                                  | <0.3                             | <0.3<br>#                        |
| Lead (diss.filt)                                                                                    | <0.2 µg/l                       | TM152                                    | 48.1                            | 2.71                            |                                  |                                  | <0.2                             | 0.421                            |
| Manganese (diss.filt)                                                                               | <3 µg/l                         | TM152                                    | 4360 #                          | 11600<br>#                      |                                  |                                  | <3<br>#                          | <3<br>#                          |
| Molybdenum (diss.filt)                                                                              | <3 µg/l                         | TM152                                    | <18 #                           | <18<br>#                        |                                  |                                  | <3<br>#                          | <3 #                             |
| Nickel (diss.filt)                                                                                  | <0.4 µg/l                       | TM152                                    | 43.2                            | 96.1                            |                                  |                                  | <0.4                             | <0.4                             |
| Vanadium (diss.filt)                                                                                | <1 µg/l                         | TM152                                    | <6<br>#                         | <6<br>#                         |                                  |                                  | <1 #                             | <1 #                             |
| Zinc (diss.filt)                                                                                    | <1 µg/l                         | TM152                                    | 37700 #                         | <17.6<br>#                      |                                  |                                  | <1 #                             | 30.8                             |
| Calcium (Dis.Filt)                                                                                  | <0.2 mg/l                       | TM152                                    |                                 |                                 |                                  |                                  | 12.2                             | 12.4                             |
| Iron (Dis.Filt)                                                                                     | <0.019 mg/l                     | TM152                                    | 19.4<br>#                       | 109<br>#                        |                                  |                                  | <0.019<br>#                      | <0.019<br>#                      |
| Sulphate                                                                                            | <2 mg/l                         | TM184                                    | 913 #                           | 1010 #                          |                                  |                                  | 11.7                             | 9.6                              |
| рН                                                                                                  | <1 pH Units                     | TM256                                    | 3.1                             | 3.57                            |                                  |                                  | 7.6<br>#                         | 7.72<br>#                        |
| Aluminium (diss.filt)                                                                               | <10 µg/l                        | TM152                                    | "                               | "                               | <10                              | <10                              | "                                | "                                |
| Antimony (diss.filt)                                                                                | <1 µg/l                         | TM152                                    |                                 |                                 | <1                               | <1                               |                                  |                                  |
| Arsenic (diss.filt)                                                                                 | <0.5 µg/l                       | TM152                                    |                                 |                                 | <0.5                             | <0.5                             |                                  |                                  |
| Barium (diss.filt)                                                                                  | <0.2 µg/l                       | TM152                                    |                                 |                                 | 0.224                            | 37.8                             |                                  |                                  |
| Cadmium (diss.filt)                                                                                 | <0.08 µg/l                      | TM152                                    |                                 |                                 | <0.08                            | <0.08                            |                                  |                                  |
| Chromium (diss.filt)                                                                                | <1 µg/l                         | TM152                                    |                                 |                                 | <1                               | <1                               |                                  |                                  |
| Cobalt (diss.filt)                                                                                  | <0.5 µg/l                       | TM152                                    |                                 |                                 | <0.5                             | <0.5                             |                                  |                                  |
| Copper (diss.filt)                                                                                  | <0.3 µg/l                       | TM152                                    |                                 |                                 | <0.3                             | <0.3                             |                                  |                                  |
| Lead (diss.filt)                                                                                    | <0.2 µg/l                       | TM152                                    |                                 |                                 | 0.298                            | <0.2                             |                                  |                                  |
| Manganese (diss.filt)                                                                               | <3 µg/l                         | TM152                                    |                                 |                                 | <3                               | <3                               |                                  |                                  |
| Molybdenum (diss.filt)                                                                              | <3 µg/l                         | TM152                                    |                                 |                                 | <3                               | <3                               |                                  |                                  |
| Nickel (diss.filt)                                                                                  | <0.4 µg/l                       | TM152                                    |                                 |                                 | <0.4                             | <0.4                             |                                  |                                  |
| Vanadium (diss.filt)                                                                                | <1 µg/l                         | TM152                                    |                                 |                                 | <1                               | <1                               |                                  |                                  |

# **CERTIFICATE OF ANALYSIS**



SDG:180918-53Client Reference:118174Report Number:473772Location:AvocaOrder Number:118174.2.3.0Superseded Report:

| Results Legend # ISO17025 accredited.                                                                                                                                                                                                                                                                                                                                              |                 | Customer Sample Ref.                                                                                 | MWDA1                                                                    | MWDA2                                                                                | SMDB02.11                                                                  | SMSD03.11                                                              | SW1-SM                                                                                  | SW3-SM                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| M mCERTS accredited. aq Aqueous / settled sample. diss.fill: Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. * Subcontracted test. * % recovery of the surrogate stands check the efficiency of the method results of individual compounds samples aren't corrected for the re  (F) Trigger breach confirmed 1-5&4§® Sample deviation (see appendix)  Component | . The<br>rithin | Depth (m) Sample Type Date Sampled Sample Time Date Received SDG Ref Lab Sample No.(s) AGS Reference | Ground Water (GW)<br>13/09/2018<br>18/09/2018<br>18/09/8-53<br>18/349767 | Ground Water (GW)<br>13/09/2018<br>18/09/2018<br>18/09/2018<br>180918-53<br>18349768 | Process Water (PR)<br>13/09/2018<br>18/09/2018<br>18/09/2018<br>18/09/2018 | Process Water (PR) 13/09/2018 18/09/2018 18/09/2018 180918-53 18349769 | Surface Water (SW)<br>13/09/2018<br>18/09/2018<br>18/09/2018<br>18/09/18-53<br>18349761 | Surface Water (SW)<br>13/09/2018<br>18/09/2018<br>18/09/8-53<br>18349763 |
| Zinc (diss.filt)                                                                                                                                                                                                                                                                                                                                                                   | <1 µg/l         |                                                                                                      |                                                                          |                                                                                      | 2.17                                                                       | <1                                                                     |                                                                                         |                                                                          |
| Calcium (Dis.Filt)                                                                                                                                                                                                                                                                                                                                                                 | <0.2 mg         | /I TM152                                                                                             |                                                                          |                                                                                      | <0.2                                                                       | 12.5                                                                   |                                                                                         |                                                                          |
| Iron (Dis.Filt)                                                                                                                                                                                                                                                                                                                                                                    | <0.019 m        | g/l TM152                                                                                            |                                                                          |                                                                                      | <0.019                                                                     | <0.019                                                                 |                                                                                         |                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                    |                 |                                                                                                      |                                                                          |                                                                                      |                                                                            |                                                                        |                                                                                         |                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                    |                 |                                                                                                      |                                                                          |                                                                                      |                                                                            |                                                                        |                                                                                         |                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                    |                 |                                                                                                      |                                                                          |                                                                                      |                                                                            |                                                                        |                                                                                         |                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                    |                 |                                                                                                      |                                                                          |                                                                                      |                                                                            |                                                                        |                                                                                         |                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                    |                 |                                                                                                      |                                                                          |                                                                                      |                                                                            |                                                                        |                                                                                         |                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                    |                 |                                                                                                      |                                                                          |                                                                                      |                                                                            |                                                                        |                                                                                         |                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                    |                 |                                                                                                      |                                                                          |                                                                                      |                                                                            |                                                                        |                                                                                         |                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                    |                 |                                                                                                      |                                                                          |                                                                                      |                                                                            |                                                                        |                                                                                         |                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                    |                 |                                                                                                      |                                                                          |                                                                                      |                                                                            |                                                                        |                                                                                         |                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                    |                 |                                                                                                      |                                                                          |                                                                                      |                                                                            |                                                                        |                                                                                         |                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                    |                 |                                                                                                      |                                                                          |                                                                                      |                                                                            |                                                                        |                                                                                         |                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                    |                 |                                                                                                      |                                                                          |                                                                                      |                                                                            |                                                                        |                                                                                         |                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                    |                 |                                                                                                      |                                                                          |                                                                                      |                                                                            |                                                                        |                                                                                         |                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                    |                 |                                                                                                      |                                                                          |                                                                                      |                                                                            |                                                                        |                                                                                         |                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                    |                 |                                                                                                      |                                                                          |                                                                                      |                                                                            |                                                                        |                                                                                         |                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                    |                 |                                                                                                      |                                                                          |                                                                                      |                                                                            |                                                                        |                                                                                         |                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                    |                 |                                                                                                      |                                                                          |                                                                                      |                                                                            |                                                                        |                                                                                         |                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                    |                 |                                                                                                      |                                                                          |                                                                                      |                                                                            |                                                                        |                                                                                         |                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                    |                 |                                                                                                      |                                                                          |                                                                                      |                                                                            |                                                                        |                                                                                         |                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                    |                 |                                                                                                      |                                                                          |                                                                                      |                                                                            |                                                                        |                                                                                         |                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                    |                 |                                                                                                      |                                                                          |                                                                                      |                                                                            |                                                                        |                                                                                         |                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                    |                 |                                                                                                      |                                                                          |                                                                                      |                                                                            |                                                                        |                                                                                         |                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                    |                 |                                                                                                      |                                                                          |                                                                                      |                                                                            |                                                                        |                                                                                         |                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                    |                 |                                                                                                      |                                                                          |                                                                                      |                                                                            |                                                                        |                                                                                         |                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                    |                 |                                                                                                      |                                                                          |                                                                                      |                                                                            |                                                                        |                                                                                         |                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                    |                 |                                                                                                      |                                                                          |                                                                                      |                                                                            |                                                                        |                                                                                         |                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                    |                 |                                                                                                      |                                                                          |                                                                                      |                                                                            |                                                                        |                                                                                         |                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                    |                 |                                                                                                      |                                                                          |                                                                                      | !                                                                          |                                                                        |                                                                                         |                                                                          |

# **CERTIFICATE OF ANALYSIS**



SDG:180918-53Client Reference:118174Report Number:473772Location:AvocaOrder Number:118174.2.3.0Superseded Report:

| Desulte Leward                                                                  |                     | Customer Sample Bef          | 01/5 014              | 0110 011              | 0004 004 04           | ONO ON CONTIN         |  |
|---------------------------------------------------------------------------------|---------------------|------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|--|
| Results Legend  # ISO17025 accredited.  M mCERTS accredited.                    |                     | Customer Sample Ref.         | SW5-SM                | SW6-SM                | SW4-SM-GA             | SW2-SM-SOUTH          |  |
| aq Aqueous / settled sample.                                                    |                     | Depth (m)                    |                       |                       |                       |                       |  |
| diss.filt Dissolved / filtered sample.<br>tot.unfilt Total / unfiltered sample. |                     | Sample Type                  | Surface Water (SW)    | Surface Water (SW)    | Surface Water (SW)    | Surface Water (SW)    |  |
| * Subcontracted test.  ** % recovery of the surrogate standa                    | ard to              | Date Sampled<br>Sample Time  | 13/09/2018            | 13/09/2018            | 13/09/2018            | 13/09/2018            |  |
| check the efficiency of the method.<br>results of individual compounds wi       |                     | Date Received                | 18/09/2018            | 18/09/2018            | 18/09/2018            | 18/09/2018            |  |
| samples aren't corrected for the re-                                            | covery              | SDG Ref<br>Lab Sample No.(s) | 180918-53<br>18349765 | 180918-53<br>18349766 | 180918-53<br>18349764 | 180918-53<br>18349762 |  |
| 1-5&+§@ Sample deviation (see appendix)                                         | 1.00///             | AGS Reference                |                       |                       |                       |                       |  |
| Component Organic Carbon, Total                                                 | LOD/Unit<br><3 mg/l |                              | <3                    | <3                    | <3                    |                       |  |
| Ammoniacal Nitrogen as N                                                        | <0.2 mg/            | TM099                        | <0.2                  | <b>*</b>              | <0.2                  | <0.2                  |  |
|                                                                                 |                     |                              | #                     | #                     | #                     | #                     |  |
| Aluminium (diss.filt)                                                           | <10 µg/l            |                              | <10<br>#              | <10<br>#              | <10<br>#              | <10<br>#              |  |
| Antimony (diss.filt)                                                            | <1 µg/l             | TM152                        | <1                    | <1                    | <1                    | <1                    |  |
| Arsenic (diss.filt)                                                             | <0.5 µg/            | I TM152                      | 0.579<br>#            | <0.5<br>#             | 0.553<br>#            | 0.504<br>#            |  |
| Barium (diss.filt)                                                              | <0.2 µg/            | I TM152                      | 54.9<br>#             | 60.4<br>#             | 61.3<br>#             | 152<br>#              |  |
| Cadmium (diss.filt)                                                             | <0.08 µg            | /I TM152                     | 0.298<br>#            | 0.234<br>#            | 0.187<br>#            | 4.49<br>#             |  |
| Chromium (diss.filt)                                                            | <1 µg/l             | TM152                        | <1<br>#               | <1<br>#               | <1<br>#               | <1 #                  |  |
| Cobalt (diss.filt)                                                              | <0.5 µg/            | I TM152                      | <0.5<br>#             | <0.5<br>#             | <0.5<br>#             | <0.5<br>#             |  |
| Copper (diss.filt)                                                              | <0.3 µg/            | I TM152                      | <0.3                  | <0.3                  | <0.3                  | <0.3                  |  |
| Lead (diss.filt)                                                                | <0.2 µg/            | I TM152                      | 0.724 #               | 1.44 #                | 1.63                  | 1.25                  |  |
| Manganese (diss.filt)                                                           | <3 µg/l             | TM152                        | 3.78<br>#             | 3.73<br>#             | <3<br>#               | <3<br>#               |  |
| Molybdenum (diss.filt)                                                          | <3 µg/l             | TM152                        | <3<br>#               | <3<br>#               | <3<br>#               | <3<br>#               |  |
| Nickel (diss.filt)                                                              | <0.4 µg/            | I TM152                      | 0.515                 | 0.549 #               | 0.578 #               | 4.86                  |  |
| Vanadium (diss.filt)                                                            | <1 µg/l             | TM152                        | <1 #                  | <1 #                  | <1 #                  | <1 #                  |  |
| Zinc (diss.filt)                                                                | <1 µg/l             | TM152                        | 150<br>#              | 148<br>#              | 149<br>#              | 1660<br>#             |  |
| Calcium (Dis.Filt)                                                              | <0.2 mg/            | TM152                        | 21.5<br>#             | 22.7<br>#             | 22.9<br>#             |                       |  |
| Iron (Dis.Filt)                                                                 | <0.019 mg           | g/I TM152                    | <0.019<br>#           | <0.019<br>#           | <0.019<br>#           | <0.019<br>#           |  |
| Sulphate                                                                        | <2 mg/l             | TM184                        | 10.4<br>#             | 10.5<br>#             | 11.4<br>#             | 27.6<br>#             |  |
| pH                                                                              | <1 pH Uni           | ts TM256                     | 7.82<br>#             | 7.94<br>#             | 7.9<br>#              | 7.72<br>#             |  |
|                                                                                 |                     |                              |                       |                       |                       |                       |  |
|                                                                                 |                     |                              |                       |                       |                       |                       |  |
|                                                                                 |                     |                              |                       |                       |                       |                       |  |
|                                                                                 |                     |                              |                       |                       |                       |                       |  |
|                                                                                 |                     |                              |                       |                       |                       |                       |  |
|                                                                                 |                     |                              |                       |                       |                       |                       |  |
|                                                                                 |                     |                              |                       |                       |                       |                       |  |
|                                                                                 |                     |                              |                       |                       |                       |                       |  |
|                                                                                 |                     |                              |                       |                       |                       |                       |  |
|                                                                                 |                     |                              |                       |                       |                       |                       |  |
|                                                                                 |                     |                              |                       |                       |                       |                       |  |
|                                                                                 |                     |                              |                       |                       |                       |                       |  |
|                                                                                 |                     |                              |                       | l                     |                       |                       |  |

Validated



# **CERTIFICATE OF ANALYSIS**

 SDG:
 180918-53
 Client Reference:
 118174
 Report Number:
 473772

 Location:
 Avoca
 Order Number:
 118174.2.3.0
 Superseded Report:

# **Table of Results - Appendix**

| Method No | Reference                                                                                                                                                         | Description                                                                                    |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| TM090     | Method 5310, AWWA/APHA, 20th Ed., 1999 / Modified: US<br>EPA Method 415.1 & 9060                                                                                  | Determination of Total Organic Carbon/Total Inorganic Carbon in Water and Waste Water          |
| TM099     | BS 2690: Part 7:1968 / BS 6068: Part2.11:1984                                                                                                                     | Determination of Ammonium in Water Samples using the Kone Analyser                             |
| TM152     | Method 3125B, AWWA/APHA, 20th Ed., 1999                                                                                                                           | Analysis of Aqueous Samples by ICP-MS                                                          |
| TM184     | EPA Methods 325.1 & 325.2,                                                                                                                                        | The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric<br>Analysers |
| TM256     | The measurement of Electrical Conductivity and the<br>Laboratory determination of pH Value of Natural, Treated<br>and Wastewaters. HMSO, 1978. ISBN 011 751428 4. | Determination of pH in Water and Leachate using the GLpH pH Meter                              |

NA = not applicable.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden (Method codes TM) or ALS Life Sciences Ltd Aberdeen (Method codes S).

Validated

# **CERTIFICATE OF ANALYSIS**



SDG:180918-53Client Reference:118174Report Number:473772Location:AvocaOrder Number:118174.2.3.0Superseded Report:

**Test Completion Dates** 

|                                    | _            | 163          | t Com         | pietioi       | Date          | 3             |               |               |               |               |
|------------------------------------|--------------|--------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Lab Sample No(s)                   | 18349767     | 18349768     | 18349770      | 18349769      | 18349761      | 18349763      | 18349765      | 18349766      | 18349764      | 18349762      |
| Customer Sample Ref.               | MWDA1        | MWDA2        | SMDB02.11     | SMSD03.11     | SW1-SM        | SW3-SM        | SW5-SM        | SW6-SM        | SW4-SM-GA     | SW2-SM-SOUTH  |
| AGS Ref.                           |              |              |               |               |               |               |               |               |               |               |
| Depth                              |              |              |               |               |               |               |               |               |               |               |
| Туре                               | Ground Water | Ground Water | Process Water | Process Water | Surface Water |
| Ammoniacal Nitrogen                | 21-Sep-2018  | 21-Sep-2018  |               |               | 21-Sep-2018   | 21-Sep-2018   | 21-Sep-2018   | 21-Sep-2018   | 21-Sep-2018   | 21-Sep-2018   |
| Anions by Kone (w)                 | 20-Sep-2018  | 20-Sep-2018  |               |               | 20-Sep-2018   | 20-Sep-2018   | 20-Sep-2018   | 20-Sep-2018   | 20-Sep-2018   | 20-Sep-2018   |
| Dissolved Metals by ICP-MS         | 24-Sep-2018  | 22-Sep-2018  | 24-Sep-2018   | 22-Sep-2018   |
| pH Value                           | 20-Sep-2018  | 20-Sep-2018  |               |               | 20-Sep-2018   | 20-Sep-2018   | 20-Sep-2018   | 20-Sep-2018   | 20-Sep-2018   | 20-Sep-2018   |
| Total Organic and Inorganic Carbon |              |              |               |               | 21-Sep-2018   | 21-Sep-2018   | 21-Sep-2018   | 21-Sep-2018   | 21-Sep-2018   |               |

# **CERTIFICATE OF ANALYSIS**



 SDG:
 180918-53

 Location:
 Avoca

Client Reference: Order Number: 118174 118174.2.3.0 Report Number: Superseded Report: 473772

# **ASSOCIATED AQC DATA**

# Ammoniacal Nitrogen

| Component                | Method Code | QC 1820                        | QC 1826                        |
|--------------------------|-------------|--------------------------------|--------------------------------|
| Ammoniacal Nitrogen as N | TM099       | <b>101.6</b><br>95.98 : 104.95 | <b>100.4</b><br>95.98 : 104.95 |

# Anions by Kone (w)

| Component                | Method Code | QC 1808        |
|--------------------------|-------------|----------------|
| Chloride                 | TM184       |                |
|                          |             | 92.93 : 115.43 |
| Phosphate (Ortho as PO4) | TM184       |                |
|                          |             | 96.40 : 108.40 |
| Sulphate (soluble)       | TM184       | 104.4          |
|                          |             | 90.53 : 113.03 |
| TON as NO3               | TM184       |                |
|                          |             | 96.26 : 111.21 |

# Dissolved Metals by ICP-MS

| Component | Method Code | QC 1862                         | QC 1844                         | QC 1861                         | QC 1824                         |
|-----------|-------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| Aluminium | TM152       | <b>100.67</b> 94.19 : 114.31    | <b>102.33</b><br>94.19 : 114.31 | <b>101.33</b><br>94.19 : 114.31 | <b>103.67</b><br>94.19 : 114.31 |
| Antimony  | TM152       | <b>102.67</b> 79.80 : 122.00    | <b>101.5</b><br>79.80 : 122.00  | <b>101.5</b><br>79.80 : 122.00  | <b>102.5</b><br>79.80 : 122.00  |
| Arsenic   | TM152       | <b>101.0</b><br>90.42 : 111.32  | <b>101.0</b><br>90.42 : 111.32  | <b>100.5</b><br>90.42 : 111.32  | <b>102.0</b><br>90.42 : 111.32  |
| Barium    | TM152       | <b>102.0</b><br>90.79 : 113.16  | <b>101.33</b><br>90.79 : 113.16 | <b>101.83</b><br>90.79 : 113.16 | <b>101.17</b><br>90.79 : 113.16 |
| Beryllium | TM152       | <b>102.17</b><br>93.25 : 120.04 | <b>106.0</b><br>93.25 : 120.04  | <b>102.5</b><br>93.25 : 120.04  | <b>104.83</b><br>93.25 : 120.04 |
| Bismuth   | TM152       | <b>102.67</b> 94.65 : 117.05    | <b>103.5</b><br>94.65 : 117.05  | <b>101.0</b><br>94.65 : 117.05  | <b>105.5</b><br>94.65 : 117.05  |
| Borate    | TM152       | <b>103.09</b><br>88.00 : 112.00 | <b>103.09</b><br>88.00 : 112.00 | <b>102.47</b><br>88.00 : 112.00 | <b>103.09</b><br>88.00 : 112.00 |
| Boron     | TM152       | <b>103.0</b><br>86.68 : 117.67  | <b>103.0</b><br>86.68 : 117.67  | <b>102.33</b><br>86.68 : 117.67 | <b>103.0</b><br>86.68 : 117.67  |
| Cadmium   | TM152       | <b>103.67</b> 94.60 : 112.40    | <b>103.67</b><br>94.60 : 112.40 | <b>102.67</b><br>94.60 : 112.40 | <b>103.33</b><br>94.60 : 112.40 |
| Chromium  | TM152       | <b>101.67</b><br>93.28 : 110.91 | <b>102.67</b><br>93.28 : 110.91 | <b>101.0</b><br>93.28 : 110.91  | <b>105.67</b><br>93.28 : 110.91 |
| Cobalt    | TM152       | <b>102.0</b><br>84.39 : 114.26  | <b>103.0</b><br>84.39 : 114.26  | <b>101.83</b><br>84.39 : 114.26 | <b>103.67</b><br>84.39 : 114.26 |
| Copper    | TM152       | <b>101.67</b><br>88.86 : 118.72 | <b>103.17</b><br>88.86 : 118.72 | <b>102.17</b><br>88.86 : 118.72 | <b>103.67</b><br>88.86 : 118.72 |
| Lead      | TM152       | <b>104.17</b><br>89.25 : 115.12 | <b>102.67</b><br>89.25 : 115.12 | <b>102.67</b><br>89.25 : 115.12 | <b>105.17</b><br>89.25 : 115.12 |
| Lithium   | TM152       | <b>102.0</b><br>89.26 : 119.04  | <b>104.67</b><br>89.26 : 119.04 | <b>101.67</b><br>89.26 : 119.04 | <b>103.5</b><br>89.26 : 119.04  |
| Manganese | TM152       | <b>101.5</b><br>94.24 : 112.74  | <b>102.5</b><br>94.24 : 112.74  | <b>100.5</b><br>94.24 : 112.74  | <b>103.0</b><br>94.24 : 112.74  |

#### Validated

# **CERTIFICATE OF ANALYSIS**



 SDG:
 180918-53
 Client Reference:
 118174
 Report Number:
 473772

 Location:
 Avoca
 Order Number:
 118174.2.3.0
 Superseded Report:

# Dissolved Metals by ICP-MS

|            |       | QC 1862        | QC 1844        | QC 1861        | QC 1824        |
|------------|-------|----------------|----------------|----------------|----------------|
| Molybdenum | TM152 | 101.5          | 100.0          | 100.5          | 101.0          |
|            |       | 87.00 : 108.89 | 87.00 : 108.89 | 87.00 : 108.89 | 87.00 : 108.89 |
| Nickel     | TM152 | 102.0          | 103.67         | 103.0          | 103.33         |
|            |       | 92.11 : 110.56 | 92.11 : 110.56 | 92.11 : 110.56 | 92.11 : 110.56 |
| Niobium    | TM152 |                |                |                |                |
|            |       |                | 88.00 : 112.00 | 88.00 : 112.00 |                |
| Phosphorus | TM152 | 100.83         | 101.33         | 100.17         | 101.0          |
|            |       | 90.52 : 115.47 | 90.52 : 115.47 | 90.52 : 115.47 | 90.52 : 115.47 |
| Selenium   | TM152 | 101.5          | 101.5          | 100.67         | 103.0          |
|            |       | 88.44 : 113.86 | 88.44 : 113.86 | 88.44 : 113.86 | 88.44 : 113.86 |
| Silver     | TM152 | 102.67         | 101.0          | 100.83         | 102.17         |
|            |       | 87.04 : 107.38 | 87.04 : 107.38 | 87.04 : 107.38 | 87.04 : 107.38 |
| Strontium  | TM152 | 101.33         | 101.0          | 101.0          | 100.0          |
|            |       | 90.72 : 114.82 | 90.72 : 114.82 | 90.72 : 114.82 | 90.72 : 114.82 |
| Tellurium  | TM152 | 98.17          | 98.0           | 97.5           | 98.17          |
|            |       | 90.72 : 112.62 | 90.72 : 112.62 | 90.72 : 112.62 | 90.72 : 112.62 |
| Thallium   | TM152 | 101.0          | 99.33          | 98.83          | 102.83         |
|            |       | 86.08 : 122.48 | 86.08 : 122.48 | 86.08 : 122.48 | 86.08 : 122.48 |
| Titanium   | TM152 | 100.5          | 100.0          | 99.17          | 101.83         |
|            |       | 92.82 : 118.92 | 92.82 : 118.92 | 92.82 : 118.92 | 92.82 : 118.92 |
| Tungsten   | TM152 | 104.67         | 102.5          | 101.67         | 103.5          |
|            |       | 78.12 : 132.82 | 78.12 : 132.82 | 78.12 : 132.82 | 78.12 : 132.82 |
| Uranium    | TM152 | 102.67         | 101.67         | 101.33         | 104.33         |
|            |       | 90.58 : 113.28 | 90.58 : 113.28 | 90.58 : 113.28 | 90.58 : 113.28 |
| Vanadium   | TM152 | 104.0          | 99.0           | 100.67         | 101.83         |
|            |       | 88.43 : 114.30 | 88.43 : 114.30 | 88.43 : 114.30 | 88.43 : 114.30 |
| Zinc       | TM152 | 106.0          | 106.33         | 105.67         | 107.67         |
|            |       | 86.52 : 115.27 | 86.52 : 115.27 | 86.52 : 115.27 | 86.52 : 115.27 |
| Zirconium  | TM152 |                |                |                |                |
|            |       |                | 88.00 : 112.00 | 88.00 : 112.00 |                |

# pH Value

| Component | Method Code | QC 1843                        |
|-----------|-------------|--------------------------------|
| рН        | TM256       | <b>100.4</b><br>99.73 : 102.16 |

# Total Organic and Inorganic Carbon

| Component            | Method Code | QC 1879        |
|----------------------|-------------|----------------|
| Total Organic Carbon | TM090       | 98.83          |
|                      |             | 95.80 : 111.10 |

The above information details the reference name of the analytical quality control sample (AQC) that has been run with the samples contained in this report for the different methods of analysis.

The figure detailed is the percentage recovery result for the AQC.

The subscript numbers below are the percentage recovery lower control limit (LCL) and the upper control limit (UCL). The percentage recovery result for the AQC should be between these limits to be statistically in control.

#### **CERTIFICATE OF ANALYSIS**



473772 SDG: 180918-53 118174 Client Reference: Report Number: 118174.2.3.0 Superseded Report: Location: Avoca Order Number:

Appendix

# General

- for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.
- 2. Samples will be run in duplicate upon request, but an additional charge may be incurred.
- 3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.
- 4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised
- 6. When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.
- 7. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.
- 8. If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.
- 9. NDP No determination possible due to insufficient/unsuitable sample.
- 10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals - total metals must be requested separately
- 11. Results relate only to the items tested.
- 12. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected
- 13. Surrogate recoveries Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect
- 14. Product analyses Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors
- 15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).
- 16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 15).
- Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- 19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.
- 20. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.

- 1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except 21. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
  - 22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.
  - 23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised
  - 24. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

# Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

| 1 | Container with Headspace provided for volatiles analysis       |
|---|----------------------------------------------------------------|
| 2 | Incorrect container received                                   |
| 3 | Deviation from method                                          |
| 4 | Holding time exceeded before sample received                   |
| 5 | Samples exceeded holding time before presevation was performed |
| § | Sampled on date not provided                                   |
| • | Sample holding time exceeded in laboratory                     |
| @ | Sample holding time exceeded due to sampled on date            |
| & | Sample Holding Time exceeded - Late arrival of instructions.   |

# Asbestos

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

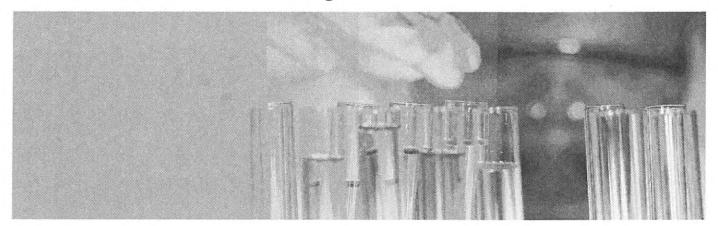
| Asbe stos Type            | Common Name    |  |  |
|---------------------------|----------------|--|--|
| Chrysof le                | White Asbests  |  |  |
| Amosite                   | Brown Asbestos |  |  |
| Cro d dolite              | Blue Asbe stos |  |  |
| Fibrous Act nolite        | -              |  |  |
| Fib to us Anthop hyll ite | -              |  |  |
| Fibrous Tremolite         | -              |  |  |

#### Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.


# Appendix G

**Standard Reference Material Certificates** 



# **Quality Control**

# **Instructions and Data Package**



**Customer Number: F655907** 

Focus Scientific Solutions Ltd Unit 12, Block 3 City North Business Campus Ireland Stamullen, Co.Meath,







# **Quality Control Sample Dilution Instructions**

This section contains the preparation instructions for all samples that you have ordered.

If you have any questions concerning the Instructions listed in this portion of your Data Package please feel free to call ERA's Technical Staff at 1-800-372-0122.









# Instructions for Catalog # 740 Ready-to-Use Trace Metals

Revision 041608

# **Description:**

- This standard is packaged in a 500 mL polyethylene bottle containing approximately 500 mL of standard.
- This standard is preserved with approximately 0.15%(v/v) nitric acid.
- The standard should be stored at 4±2°C.
- This product is intended to be used as a quality control check of the entire analytical process for the analytes/matrix included in the standard.
- The standard contains the following analytes in the concentration ranges shown:

| Aluminum  | 200 – 4000 μg/L            | Lead 70 – 3000 μg/L             |
|-----------|----------------------------|---------------------------------|
| Antimony  | 95 – 900 μg/L              | Manganese                       |
| Arsenic   | 70 – 900 μg/L              | Molybdenum $60 - 600 \mu g/L$   |
| Barium    | 100 – 2500 μg/L            | Nickel $80 - 3000 \mu g/L$      |
| Beryllium | 8 – 900 μg/L               | Selenium                        |
| Boron     | $800 - 2000 \mu\text{g/L}$ | Silver26 – 600 $\mu$ g/L        |
| Cadmium   | 8 – 750 μg/L               | Strontium30 $-300 \mu g/L$      |
| Chromium  | 17 $- 1000 \mu\text{g/L}$  | Thallium                        |
| Cobalt    | 28 $- 1000 \mu\text{g/L}$  | Vanadium $55 - 2000 \mu g/L$    |
| Copper    | 40 – 900 μg/L              | Zinc $100 - 2000 \mu\text{g/L}$ |
| Iron      | 200 – 4000 µg/L            |                                 |

# **Helpful Hints:**

- While it is technically not necessary to digest this standard prior to analysis, digestion should be performed if this is your normal procedure.
- For some methods (primarily colorimetric methods), pH adjustment or preparatory extraction may be required to remove any interferences before analysis.

#### Instructions:

- 1. Shake the Ready-to-Use Trace Metals bottle prior to opening.
- 2. Remove aliquots and analyze by your normal procedures.

# Safety:

ERA products may be hazardous and are intended for use by professional laboratory personnel trained in the competent handling of such materials. Responsibility for the safe use of these products rests entirely with the buyer and/or user. Material Safety Data Sheets (MSDS) for all ERA products are available by calling 1-800-372-0122.



# Data PacK™ Certification Sheet(s)

The data contained in this section of the Data PacK™ contains all of the certification sheets for the quality control samples that you have ordered.

If you have any questions concerning the data listed in this portion of your Data PacK™ please feel free to call ERA's Technical Staff at 1-800-372-0122.







A Waters Company

# **Certificate of Analysis**

# Ready-to-Use WasteWatR™ Trace Metals

Lot No. P273-740B Catalog No. 740 Issue Date: July 16, 2018 Revision Date: Original Product use instructions are included as part of the certification packet and are paginated separately from this Certificate of Analysis. Please reference the product use instructions for catalog #740 revision 041608.

# Certification

|            | Certified | Uncertainty 2 |      | Q   |      |      | PI  | Г    |
|------------|-----------|---------------|------|-----|------|------|-----|------|
|            | Value 1   | •             | PA   | Ls  | тм 3 | PA   | Ls  | TM 4 |
|            | (μg/l)    |               |      | (µд |      |      | (μg |      |
| Parameter  | (rs/      |               |      | (F3 | ,    |      | (FS | .,   |
| aluminum   | 1540      | 0.454%        | 1350 | -   | 1740 | 1270 | -   | 1770 |
| antimony   | 314       | 0.712%        | 273  | -   | 345  | 246  | -   | 371  |
| arsenic    | 644       | 0.646%        | 563  | -   | 708  | 543  | _   | 737  |
| barium     | 2140      | 0.496%        | 1950 |     | 2310 | 1820 | -   | 2460 |
| beryllium  | 253       | 0.538%        | 228  | -   | 276  | 215  | -   | 291  |
| boron      | 967       | 3.93%         | 864  | -   | 1090 | 822  | -   | 1110 |
| cadmium    | 738       | 0.458%        | 656  |     | 790  | 627  | -   | 849  |
| chromium   | 436       | 0.470%        | 397  | -   | 475  | 371  | -   | 501  |
| cobalt     | 493       | 0.458%        | 460  | -   | 547  | 419  | -   | 567  |
| copper     | 423       | 3.41%         | 384  | -   | 461  | 360  | -   | 486  |
| iron       | 2490      | 0.454%        | 2260 | -   | 2760 | 2120 | -   | 2860 |
| lead       | 592       | 0.460%        | 536  | -   | 651  | 503  | _   | 681  |
| manganese  | 210       | 1.24%         | 195  | -   | 231  | 178  | -   | 242  |
| molybdenum | 104       | 0.452%        | 93.4 | -   | 112  | 84.1 | -   | 123  |
| nickel     | 449       | 2.70%         | 408  | -   | 489  | 390  | -   | 512  |
| selenium   | 154       | 0.456%        | 135  |     | 171  | 131  | -   | 177  |
| silver     | 929       | 0.456%        | 832  | -   | 1020 | 790  | -   | 1070 |
| strontium  | 55.7      | 1.44%         | 50.5 | -   | 61.3 | 47.3 | -   | 64.1 |
| thallium   | 419       | 1.42%         | 369  | -   | 465  | 342  | -   | 488  |
| vanadium   | 1440      | 0.456%        | 1310 | -   | 1540 | 1220 | -   | 1660 |
| zinc       | 1780      | 0.456%        | 1610 | -   | 1960 | 1510 | -   | 2050 |

# **Analytical Verification**

|                              | Ro     | ound Robin Data 5 |     | NIST Trace        | ability  |
|------------------------------|--------|-------------------|-----|-------------------|----------|
|                              | Mean   | Recovery          | n   | <b>SRM Number</b> | Recovery |
|                              | (µg/l) | (%)               |     |                   | (%)      |
| Parameter                    |        |                   |     |                   |          |
| aluminum                     | 1540   | 100%              | 182 | SRM 3101a         | 100%     |
| antimony                     | 305    | 97.3%             | 183 | SRM 3102a         | 98.8%    |
| arsenic                      | 616    | 95.7%             | 195 | SRM 3103a         | 98.8%    |
| barium                       | 2100   | 98.0%             | 183 | SRM 3104a         | 96.4%    |
| beryllium                    | 247    | 97.6%             | 175 | SRM 3105a         | 103%     |
| boron                        | 957    | 98.9%             | 138 | SRM 3107          | 98.3%    |
| cadmium                      | 719    | 97.4%             | 203 | SRM 3108          | 99.6%    |
| chromium                     | 434    | 99.7%             | 201 | SRM 3112a         | 101%     |
| cobalt                       | 506    | 103%              | 168 | SRM 3113          | 101%     |
| copper                       | 419    | 99.1%             | 212 | SRM 3114          | 99.0%    |
| iron                         | 2500   | 100%              | 178 | SRM 3126a         | 101%     |
| lead                         | 590    | 99.6%             | 204 | SRM 3128          | 99.3%    |
| manganese                    | 204    | 97.1%             | 196 | SRM 3132          | 97.4%    |
| molybdenum                   | 102    | 97.8%             | 174 | SRM 3134          | 99.0%    |
| nickel                       | 449    | 100%              | 200 | SRM 3136          | 99.8%    |
| selenium                     | 147    | 95.8%             | 194 | SRM 3149          | 98.3%    |
| silver                       | 911    | 98.1%             | 184 | SRM 3151          | 102%     |
| strontium                    | 54.3   | 97.5%             | 110 | SRM 3153a         | 101%     |
| thallium                     | 411    | 98.0%             | 171 | SRM 3158          | 101%     |
| vanadium                     | 1400   | 97.2%             | 169 | SRM 3165          | 101%     |
| zinc                         | 1760   | 98.5%             | 203 | SRM 3168a         | 96.1%    |
| Please see footnotes on back |        |                   |     |                   |          |
|                              |        |                   |     |                   |          |

16341 Table Mtn Pkwy, Golden, CO 80403

800-372-0122

fax: 303-421-0159

www.eraqc.com



- 1. The Certified Values are the actual "made-to" concentrations confirmed by ERA analytical verification.
- 2. The stated **Uncertainty** is the total propagated uncertainty at the 95% confidence interval. The uncertainty is based on the preparation and internal analytical verification of the product by ERA, multiplied by a coverage factor which is equal to the Student t factor at a 95% confidence interval at n-1 degrees of freedom. The uncertainty applies to the product as supplied and does not take into account any required or optional dilution and/or preparations the laboratory may perform while using this product.
- 3. The QC Performance Acceptance Limits (QC PALs™) are based on actual historical data collected in ERA's Proficiency Testing program. The QC PALs™ reflect any inherent biases in the methods used to establish the limits and closely approximate a 95% confidence interval of the performance that experienced laboratories should achieve using accepted environmental methods. Use the QC PALs™ to realistically evaluate your performance against your peers.
- 4. The PT Performance Acceptance Limits (PT PALs™) are calculated using the regression equations and fixed acceptance criteria specified in the NELAC proficiency testing requirements. Use the PT PALs™ when analyzing this QC standard alongside USEPA and NELAC compliant PT standards. Please note that many PT study acceptance limits are concentration dependent (some non-linearly) and, therefore, the acceptance limits of this QC standard and any PT standard may differ relative to their difference in concentrations.
- 5. The Analytical Verification data include the mean value, percent recovery and number of data points reported by the laboratories in our Proficiency Testing study compared to the Certified Values. In addition, where NIST Standard Reference Materials (SRMs) are available, each analyte has been analytically traced to the NIST SRM listed.

Traceability Recovery (%) = [(% recovery certified standard)/(% recovery NIST SRM)]\*100

The traceability data shown were compiled by analyzing the ERA standards or their associated stock solutions against the applicable NIST SRMs.

6. This standard expires 10/2018. The certified values are monitored and purchasers will be notified of any significant changes resulting in recertification or withdrawal of this certified reference material during the period of validity of this certificate.

If you have any questions or need technical assistance, please call ERA technical assistance at 1-800-372-0122 or email to info@eragc.com.

Certifying Officer: Brian Miller

ISO/IEC GUIDE 34:2009



ISO/IEC 17025:2005





# SAFETY DATA SHEET

Issuing Date 19-Jul-2016

Revision Date 07-Apr-2016

**Revision Number 1** 

This safety data sheet was created pursuant to the requirements of 29 CFR 1910.1200

# 1. IDENTIFICATION OF THE SUBSTANCE/PREPARATION AND OF THE COMPANY/UNDERTAKING

Product identifier

**Product Name** 

Trace Metals, Ready-to-Use WasteWatR™

**Product Number Synonyms** 

740 None

Recommended use of the chemical and restrictions on use

Recommended Use

Laboratory use only

Uses advised against

No information available

Details of the supplier of the safety data sheet

Supplier

ERA, A Waters Company

Supplier Address

16341 Table Mountain Parkway, Golden, CO 80403 USA

Non-Emergency Telephone Number +1-303-431-8454 E-mail address

sdsinfo@eragc.com

Emergency telephone number

**Company Emergency Phone** 

In case of EMERGENCY call CHEMTREC Day or Night

Number

Within USA and Canada: 800-424-9300 International Call Collect: +1-703-527-3887

# 2. HAZARDS IDENTIFICATION

# Classification

This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200).

| Skin corrosion/irritation         | Category 1 |  |
|-----------------------------------|------------|--|
| Serious eye damage/eye irritation | Category 1 |  |

# GHS Label elements, including precautionary statements

**Emergency Overview** 

Signal word

Danger

**Hazard Statements** 

Causes severe skin burns and eye damage



Appearance Clear, colorless

Physical state Liquid

**Odor** Odorless

# **Precautionary Statements - Prevention**

Do not breathe dust/fume/gas/mist/vapors/spray Wash face, hands and any exposed skin thoroughly after handling Wear protective gloves/protective clothing/eye protection/face protection

# **Precautionary Statements - Response**

Immediately call a POISON CENTER or doctor/physician Specific treatment (see supplemental first aid instructions on this label)

#### Eyes

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing Immediately call a POISON CENTER or doctor/physician

#### Skin

IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower Wash contaminated clothing before reuse

#### Inhalation

IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing Immediately call a POISON CENTER or doctor/physician

#### Ingestion

IF SWALLOWED: Rinse mouth. DO NOT induce vomiting

## **Precautionary Statements - Storage**

Store locked up

#### **Precautionary Statements - Disposal**

Dispose of contents/container to an approved waste disposal plant

# Hazards not otherwise classified (HNOC)

Not applicable

#### **Unknown Toxicity**

0 % of the mixture consists of ingredient(s) of unknown toxicity

# Other information

No information available

#### **Interactions with Other Chemicals**

No information available.

# 3. COMPOSITION/INFORMATION ON INGREDIENTS

Note: only the components contributing to the product's GHS hazard classification are listed in this section.

| Chemical Name | CAS No    | Weight-% |
|---------------|-----------|----------|
| Nitric Acid   | 7697-37-2 | 0.21     |

# 4. FIRST AID MEASURES

## First aid measures

**General Advice** 

Immediate medical attention is required. Show this safety data sheet to the doctor in attendance.

Eye contact Rinse immediately with plenty of water, also under the eyelids, for at least 15 minutes. Keep

eye wide open while rinsing. Do not rub affected area. Remove contact lenses, if present

and easy to do. Continue rinsing. Seek immediate medical attention/advice.

Skin contact Wash off immediately with soap and plenty of water while removing all contaminated

clothes and shoes. Seek immediate medical attention/advice.

Inhalation Remove to fresh air. If breathing has stopped, give artificial respiration. Get medical

attention immediately. Do not use mouth-to-mouth method if victim ingested or inhaled the substance; give artificial respiration with the aid of a pocket mask equipped with a one-way valve or other proper respiratory medical device. If breathing is difficult, (trained personnel should) give oxygen. Delayed pulmonary edema may occur. Get medical attention

immediately if symptoms occur.

Ingestion Do NOT induce vomiting. Rinse mouth immediately and drink plenty of water. Never give

anything by mouth to an unconscious person. Call a physician or poison control center

immediately.

Self-protection of the first aider Ensure that medical personnel are aware of the material(s) involved, take precautions to

protect themselves and prevent spread of contamination. Avoid contact with skin, eyes or clothing. Avoid direct contact with skin. Use barrier to give mouth-to-mouth resuscitation. Use personal protective equipment as required. Wear personal protective clothing (see

section 8).

Most important symptoms and effects, both acute and delayed

Most Important Symptoms and

**Effects** 

Burning sensation.

Indication of any immediate medical attention and special treatment needed

Notes to Physician Product is a corrosive material. Use of gastric lavage or emesis is contraindicated.

Possible perforation of stomach or esophagus should be investigated. Do not give chemical antidotes. Asphyxia from glottal edema may occur. Marked decrease in blood

pressure may occur with moist rales, frothy sputum, and high pulse pressure.

# 5. FIRE-FIGHTING MEASURES

Suitable Extinguishing Media

Use extinguishing measures that are appropriate to local circumstances and the surrounding environment.

Unsuitable extinguishing media

CAUTION: Use of water spray when fighting fire may be inefficient.

Specific hazards arising from the chemical

The product causes burns of eyes, skin and mucous membranes. Thermal decomposition can lead to release of irritating gases and vapors.

**Uniform Fire Code** 

Corrosive: Other--Liquid

**Hazardous Combustion Products** 

Carbon oxides.

**Explosion Data** 

Sensitivity to Mechanical Impact

No.

Sensitivity to Static Discharge

No.

Protective equipment and precautions for firefighters

As in any fire, wear self-contained breathing apparatus pressure-demand, MSHA/NIOSH (approved or equivalent) and full protective gear.

# 6. ACCIDENTAL RELEASE MEASURES

#### Personal precautions, protective equipment and emergency procedures

Personal precautions Attention! Corrosive material. Avoid contact with skin, eyes or clothing. Ensure adequate

ventilation. Use personal protective equipment as required. Evacuate personnel to safe

areas. Keep people away from and upwind of spill/leak.

Other Information Refer to protective measures listed in Sections 7 and 8.

**Environmental precautions** 

Environmental precautions Refer to protective measures listed in Sections 7 and 8. Prevent further leakage or spillage

if safe to do so. Should not be released into the environment. Do not allow to enter into

soil/subsoil. Prevent product from entering drains.

Methods and material for containment and cleaning up

Methods for containment Prevent further leakage or spillage if safe to do so.

Methods for cleaning up Soak up with inert absorbent material. Pick up and transfer to properly labeled containers.

## 7. HANDLING AND STORAGE

#### Precautions for safe handling

Handling Handle in accordance with good industrial hygiene and safety practice. Avoid contact with

skin, eyes or clothing. In case of insufficient ventilation, wear suitable respiratory

equipment. Use only with adequate ventilation and in closed systems. Do not eat, drink or smoke when using this product. Take off contaminated clothing and wash before reuse.

# Conditions for safe storage, including any incompatibilities

Storage Keep containers tightly closed in a dry, cool and well-ventilated place. Protect from

moisture. Store locked up. Keep out of the reach of children. Store away from other

materials.

Incompatible Products Acids. Bases. Oxidizing agent.

# 8. EXPOSURE CONTROLS/PERSONAL PROTECTION

## Control parameters

**Exposure Guidelines** 

This product, as supplied, does not contain any hazardous materials with occupational exposure limits established by the region specific regulatory bodies

| Chemical Name | ACGIH TLV   | OSHA PEL                             | NIOSH IDLH                 |
|---------------|-------------|--------------------------------------|----------------------------|
| Nitric Acid   | STEL: 4 ppm | TWA: 2 ppm                           | IDLH: 25 ppm               |
| 7697-37-2     | TWA: 2 ppm  | TWA: 5 mg/m <sup>3</sup>             | TWA: 2 ppm                 |
|               |             | (vacated) TWA: 2 ppm                 | TWA: 5 mg/m <sup>3</sup>   |
|               |             | (vacated) TWA: 5 mg/m <sup>3</sup>   | STEL: 4 ppm                |
|               |             | (vacated) STEL: 4 ppm                | STEL: 10 mg/m <sup>3</sup> |
|               |             | (vacated) STEL: 10 mg/m <sup>3</sup> |                            |

# Appropriate engineering controls

**Engineering Measures** 

Showers

Eyewash stations Ventilation systems

#### Individual protection measures, such as personal protective equipment

Eye/face protection

Face protection shield.

Skin and body protection

Wear protective gloves and protective clothing. Long sleeved clothing. Chemical resistant

apron. Impervious gloves.

Respiratory protection

No protective equipment is needed under normal use conditions. If exposure limits are exceeded or irritation is experienced, ventilation and evacuation may be required.

**Hygiene Measures** 

Handle in accordance with good industrial hygiene and safety practice. Avoid contact with skin, eyes or clothing. Wear suitable gloves and eye/face protection. Do not eat, drink or smoke when using this product. Take off contaminated clothing and wash before reuse. Contaminated work clothing should not be allowed out of the workplace. Regular cleaning of equipment, work area and clothing is recommended. Wash hands before breaks and immediately after handling the product. Take off contaminated clothing and wash before reuse.

# 9. PHYSICAL AND CHEMICAL PROPERTIES

Page 5/11

## **Physical and Chemical Properties**

Physical state Liquid

Appearance Clear, colorless Odor Odorless

Color No information available Odor Threshold No information available

Property Values Remarks Method

**pH** 1.5

Melting / freezing point no data available None known
Boiling point / boiling range no data available None known
Flash Point no data available None known
Evaporation Rate no data available None known
Flammability (solid, gas) no data available None known

Flammability Limit in Air

Upper flammability limit no data available Lower flammability limit no data available

Vapor pressureno data availableNone knownVapor densityno data availableNone known

Specific Gravity 1

Water Solubility Soluble in water Solubility in other solvents no data available

Solubility in other solvents no data available None known Partition coefficient: n-octanol/waterno data available None known Autoignition temperature no data available None known Decomposition temperature no data available None known Kinematic viscosity no data available None known Dynamic viscosity no data available None known None known

Explosive properties no data available Oxidizing properties no data available

#### Other Information

Softening Point no data available
VOC Content (%) no data available
Particle Size no data available

**Particle Size Distribution** 

# 10. STABILITY AND REACTIVITY

#### Reactivity

no data available.

#### **Chemical stability**

Stable under recommended storage conditions.

# Possibility of Hazardous Reactions

None under normal processing.

#### **Hazardous Polymerization**

Hazardous polymerization does not occur.

#### Conditions to avoid

Exposure to air or moisture over prolonged periods.

#### Incompatible materials

Acids. Bases. Oxidizing agent.

#### **Hazardous Decomposition Products**

Carbon oxides.

# 11. TOXICOLOGICAL INFORMATION

#### Information on likely routes of exposure

#### **Product Information**

Inhalation Specific test data for the substance or mixture is not available. Corrosive by inhalation.

(based on components). Inhalation of corrosive fumes/gases may cause coughing, choking, headache, dizziness, and weakness for several hours. Pulmonary edema may occur with tightness in the chest, shortness of breath, bluish skin, decreased blood pressure, and increased heart rate. Inhaled corrosive substances can lead to a toxic edema of the lungs.

Pulmonary edema can be fatal. May cause irritation of respiratory tract.

Eye contact Specific test data for the substance or mixture is not available. Causes burns. (based on

components). Corrosive to the eyes and may cause severe damage including blindness.

Causes serious eye damage. May cause irreversible damage to eyes.

Skin contact Specific test data for the substance or mixture is not available. May cause irritation.

Prolonged contact may cause redness and irritation.

Ingestion Specific test data for the substance or mixture is not available. Causes burns. (based on

components). Ingestion causes burns of the upper digestive and respiratory tracts. May cause severe burning pain in the mouth and stomach with vomiting and diarrhea of dark blood. Blood pressure may decrease. Brownish or yellowish stains may be seen around the mouth. Swelling of the throat may cause shortness of breath and choking. May cause lung damage if swallowed. May be fatal if swallowed and enters airways. Ingestion may cause irritation to mucous membranes. Ingestion may cause gastrointestinal irritation, nausea,

vomiting and diarrhea.

#### **Component Information**

Symptoms

| Chemical Name | Oral LD50 | Dermal LD50 | Inhalation LC50                            |
|---------------|-----------|-------------|--------------------------------------------|
| Nitric Acid   | -         | -           | = 67 ppm (Rat) 4 h = 130 mg/m <sup>3</sup> |
| 7697-37-2     |           |             | Rat)4h                                     |

#### Information on toxicological effects

Erythema (skin redness). Burning. May cause blindness. Coughing and/ or wheezing.

# Delayed and immediate effects as well as chronic effects from short and long-term exposure

Sensitization No information available.

**Carcinogenicity** The table below indicates whether each agency has listed any ingredient as a carcinogen.

| Chemical Name | ACGIH | IARC     | NTP | OSHA |
|---------------|-------|----------|-----|------|
| Nitric Acid   |       | Group 1  |     | X    |
| 7697-37-2     |       | Group 2A |     |      |

Reproductive toxicity No information available.

STOT - single exposure No information available.

STOT - repeated exposure No information available.

Chronic Toxicity Chronic exposure to corrosive fumes/gases may cause erosion of the teeth followed by jaw

necrosis. Bronchial irritation with chronic cough and frequent attacks of pneumonia are

common. Gastrointestinal disturbances may also be seen.

Target Organ Effects Respiratory system. Eyes. Skin. Gastrointestinal tract (GI).

Page 7/11

**Aspiration Hazard** 

No information available.

Numerical measures of toxicity Product Information

The following values are calculated based on chapter 3.1 of the GHS document

Not applicable

# 12. ECOLOGICAL INFORMATION

#### **Ecotoxicity**

Harmful to aquatic life.

| Chemical Name | Toxicity to Algae | Toxicity to Fish    | Toxicity to<br>Microorganisms | Daphnia Magna (Water<br>Flea) |
|---------------|-------------------|---------------------|-------------------------------|-------------------------------|
| Nitric Acid   |                   | 96h LC50: = 72 mg/L |                               |                               |
| 7697-37-2     |                   | (Gambusia affinis)  |                               | 1                             |

# Persistence and Degradability

No information available.

# **Bioaccumulation**

| Chemical Name | Log Pow |
|---------------|---------|
| Nitric Acid   | -2.3    |
| 7697-37-2     |         |

#### Other adverse effects

No information available.

# 13. DISPOSAL CONSIDERATIONS

# Waste treatment methods

Disposal methods This

This material, as supplied, is a hazardous waste according to federal regulations (40 CFR

261).

**Contaminated Packaging** 

Dispose of contents/containers in accordance with local regulations.

**US EPA Waste Number** 

D002 D006 D010 U217 P120

#### California Hazardous Waste Codes 791

This product contains one or more substances that are listed with the State of California as a hazardous waste.

| Chemical Name | California Hazardous Waste |
|---------------|----------------------------|
| Nitric Acid   | Toxic                      |
| 7697-37-2     | Corrosive                  |
|               | Ignitable                  |

# 14. TRANSPORT INFORMATION

DOT

Not regulated

**Proper Shipping Name** 

NON REGULATED

**Hazard Class** 

N/A

TDG

Not regulated

MEX Not regulated

ICAO Not regulated

IATA Not regulated

Proper Shipping Name NON REGULATED

IMDG/IMO Not regulated

RID Not regulated

ADR Not regulated

ADN Not regulated

# 15. REGULATORY INFORMATION

#### International Inventories

TSCA Complies

DSL All components are listed either on the DSL or NDSL.

TSCA - United States Toxic Substances Control Act Section 8(b) Inventory DSL/NDSL - Canadian Domestic Substances List/Non-Domestic Substances List

## **US Federal Regulations**

#### **SARA 313**

Section 313 of Title III of the Superfund Amendments and Reauthorization Act of 1986 (SARA). This product does not contain any chemicals which are subject to the reporting requirements of the Act and Title 40 of the Code of Federal Regulations, Part 372

| Chemical Name           | CAS No    | Weight-% | SARA 313 - Threshold<br>Values % |
|-------------------------|-----------|----------|----------------------------------|
| Nitric Acid - 7697-37-2 | 7697-37-2 | 0.21     | 1.0                              |

SARA 311/312 Hazard Categories

| Acute Health Hazard               | Yes |
|-----------------------------------|-----|
| Chronic Health Hazard             | No  |
| Fire Hazard                       | No  |
| Sudden release of pressure hazard | No  |
| Reactive Hazard                   | No  |

## CWA (Clean Water Act)

This product does not contain any substances regulated as pollutants pursuant to the Clean Water Act (40 CFR 122.21 and 40 CFR 122.42)

| Chemical Name            | CWA - Reportable<br>Quantities | CWA - Toxic Pollutants | CWA - Priority Pollutants | CWA - Hazardous<br>Substances |
|--------------------------|--------------------------------|------------------------|---------------------------|-------------------------------|
| Nitric Acid<br>7697-37-2 | 1000 lb                        |                        |                           | Х                             |

#### CERCLA

This material, as supplied, does not contain any substances regulated as hazardous substances under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) (40 CFR 302) or the Superfund Amendments and Reauthorization Act (SARA) (40 CFR 355). There may be specific reporting requirements at the local, regional, or state level pertaining to releases of this material

| Chemical Name            | Hazardous Substances RQs | Extremely Hazardous Substances RQs | RQ                                        |
|--------------------------|--------------------------|------------------------------------|-------------------------------------------|
| Nitric Acid<br>7697-37-2 | 1000 lb                  | 1000 lb                            | RQ 1000 lb final RQ<br>RQ 454 kg final RQ |

# US State Regulations

# California Proposition 65

This product contains the following Proposition 65 chemicals.

# U.S. State Right-to-Know Regulations

Chemical Name New Jersey Massachusetts Pennsylvania Rhode Island Illinois Water 7732-18-5 X X Х X X Nitric Acid 7697-37-2 X X X X Aluminum Nitrate Nonahydrate 7784-27-2 X Ferric Nitrate X X Х X 10421-48-4 Х X X X X Barium Nitrate 10022-31-8 X X Boric Acid 10043-35-3 Х X X X Zinc Nitrate Hexahydrate 10196-18-6 Х Manganese Nitrate Tetrahydrate X X X 10377-66-9 X X X X Nickel Nitrate Hexahydrate X 13138-45-9 X X X X Vanadium Pentoxide X 1314-62-1 X X X X X Lead Nitrate 10099-74-8 X X X **Cobalt Acetate** X 71-48-7 Х X Х Silver Nitrate X X 7761-88-8 Х X X X X Selenium 7782-49-2 X X Х Х X Cadmium 7440-43-9 Х X X X Copper 7440-50-8 Ammonium Dichromate X X X X X 7789-09-5 X X X Х X Antimony 7440-36-0 X X X Х X Arsenic 7440-38-2 Х X X Thallium Nitrate X X 10102-45-1 Х X Ammonium Molybdate 13106-76-8 Х X X X Strontium Nitrate X 10042-76-9 X X X Х Beryllium Acetate, Basic 19049-40-2

# International Regulations

| Component          | Carcinogen Status | Exposure Limits                   |
|--------------------|-------------------|-----------------------------------|
| Nitric Acid        |                   | Mexico: TWA 2 ppm                 |
| 7697-37-2 ( 0.21 ) |                   | Mexico: TWA 5 mg/m <sup>3</sup>   |
|                    |                   | Mexico: STEL 4 ppm                |
|                    |                   | Mexico: STEL 10 mg/m <sup>3</sup> |

Canada WHMIS Hazard Class Not determined

Page 10 / 11

# 16. OTHER INFORMATION

NFPA Health Hazards 3 Flammability 0 Instability 0 Physical and

HMIS Health Hazards 3 Flammability 0 Physical Hazard 0 Personal Protection

X

Prepared By Product Stewardship

23 British American Blvd. Latham, NY 12110 1-800-572-6501

Issuing Date 19-Jul-2016
Revision Date 07-Apr-2016

Revision Note No information available

# **Disclaimer**

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text

The supplier identified below generated this SDS using the UL SDS template. UL did not test, certify, or approve the substance described in this SDS, and all information in this SDS was provided by the supplier or was reproduced from publically available regulatory data sources. UL makes no representations or warranties regarding the completeness or accuracy of the information in this SDS and disclaims all liability in connection with the use of this information or the substance described in this SDS. The layout, appearance and format of this SDS is © 2014 UL LLC. All rights reserved

**End of Safety Data Sheet** 

# Appendix H

Field Data Sheets and Logbook Notes



Open Channel Flow Profiling Form

CDM Smith

Project: Environmental Monitoring of Former Mining Areas of Silvermines and Avoca

| Date: 5. 9.18                                                        | a River ofte          | ime: 16:30 Ausna     |
|----------------------------------------------------------------------|-----------------------|----------------------|
| Flow Meter Used: March                                               | 1 c Brenze            |                      |
| Left Bank: 4.10                                                      | F                     | Right Bank: 15.55    |
| Notes                                                                |                       |                      |
| or Florida distance formal de-                                       | alaan dahuis stalu    |                      |
| Stream Flow Conditions (muddy                                        | , clear, debris etc): | Phone ( at )         |
| Stream Flow Conditions (muddy                                        | clear, debris etc):   | flow-eight bank      |
| Stream Flow Conditions (muddy  Algae Weather Conditions (i.e. temper | up or nely Bo         | flow-enght bank (02) |

|                 |      |                     |           | Total<br>Depth<br>(cm) | ,    | elocity/ | (m/s) |      | Comments        | From Bridge                 |                              |
|-----------------|------|---------------------|-----------|------------------------|------|----------|-------|------|-----------------|-----------------------------|------------------------------|
| R-7L            |      | Distance<br>from IP | Width (m) |                        | V0.6 | V0.9     | V0.2  | V0.8 |                 | Depth<br>to<br>water<br>(m) | Depth<br>to<br>bottom<br>(m) |
|                 | 1    | O                   | _         | 10                     | 0    |          |       |      |                 |                             |                              |
| 15,2<br>Boulder | 2    | 0.35 (              | 35        | 14.                    | 0.01 |          |       |      |                 |                             |                              |
| 14.6            | 3    | 0.95.               | 070       | 19.                    | 0.05 |          |       |      |                 | 5                           |                              |
| Bouls e         | Λ.   | 2.15                | 1.2       | 32.                    | 0.21 |          |       |      |                 |                             |                              |
| 13              | 5    | 2.55                | 0.4       | 25                     | 0.15 |          |       |      |                 |                             |                              |
| 12              | 6    | 3.55                | 1.0       | 31                     | 0.12 |          |       |      |                 |                             |                              |
| 1               | 7    | 4.55                | 61        | 46                     | 0.29 |          |       |      |                 |                             |                              |
| 10              | 8    | 5.55                | Ŋ         | 40                     | 0.45 |          |       |      |                 |                             |                              |
| 4 9             | 9    | 6.55                | 11        | 58                     | 0.50 |          |       |      |                 |                             | -                            |
| 4 8             | 10   | 7.55                | Li        | 51                     | 0.44 |          |       |      |                 |                             |                              |
| 7.              | 3 11 | 8.85                | 1.3       | 46                     | 0.51 |          |       |      | Bullour e From. |                             |                              |
| 5.6             | 12   | 10.25               | 1.4       | 37-                    | 0.50 |          |       |      |                 |                             |                              |

# Notes:

- V0.6: Average velocity for a stream at depths between 0.09 and 0.75 metres. Multiply the total depth by 0.4 and set the sensor at this depth from the bottom (or 0.6 times the total depth from the water surface).
- VO.9: If the depth is less than 0.09m place the sensor in the water until it's just submerged and multiply the velocity by 0.9.
- Two point (V0.2 and V0.8): For depths over 0.75 metres the two point method is used (V0.2+V0.8)/2

Open Channel Flow Profiling Form



Project: Environmental Monitoring of Former Mining Areas of Silvermines and Avoca

|    |                     | Width<br>(m) | Total<br>Depth<br>(cm) | ,    | /elocity | (m/s) |       | Comments                                          | From Bridge                 |                              |  |
|----|---------------------|--------------|------------------------|------|----------|-------|-------|---------------------------------------------------|-----------------------------|------------------------------|--|
|    | Distance<br>from IP |              |                        | V0.6 | V0.9     | V0.2  | V0.8  |                                                   | Depth<br>to<br>water<br>(m) | Depth<br>to<br>bottom<br>(m) |  |
| 13 | 11.05.              | 0.8          | 38.                    | 0.37 |          |       |       |                                                   |                             |                              |  |
| 14 | 12-05               |              | 11                     | 0.39 |          |       |       | 7. Boulder                                        | a) Oth                      | 1-25.                        |  |
| 15 | 13.25               | 1-2          | 12                     | 0,07 | 3        |       |       | Boulder probrodys probrodys purps purps purps and | from 0                      |                              |  |
| 16 |                     |              |                        |      | w        | J+6   | 5 P   | flowing are                                       | 304                         |                              |  |
| 17 |                     |              |                        |      | -        |       | (a) * |                                                   |                             | rs.                          |  |
| 18 |                     |              |                        |      |          |       |       |                                                   | 1                           |                              |  |
| 19 |                     |              |                        |      |          |       |       |                                                   |                             |                              |  |
| 20 |                     |              |                        |      |          |       |       |                                                   |                             |                              |  |
| 21 |                     |              |                        |      |          |       |       | -                                                 |                             |                              |  |
| 22 |                     |              |                        |      |          |       |       |                                                   |                             |                              |  |
| 23 |                     |              |                        |      |          |       |       |                                                   |                             |                              |  |
| 24 |                     |              |                        |      |          |       | -     |                                                   |                             |                              |  |
| 25 |                     |              |                        |      |          |       |       | -                                                 |                             |                              |  |
| 26 |                     |              |                        |      |          |       |       |                                                   |                             |                              |  |
| 27 |                     |              |                        |      |          |       |       |                                                   |                             |                              |  |
| 28 |                     |              |                        |      |          |       |       |                                                   |                             |                              |  |
| 29 |                     |              |                        |      |          |       |       |                                                   |                             |                              |  |
| 30 |                     |              |                        |      |          |       |       |                                                   |                             |                              |  |

#### Notes:

- V0.6: Average velocity for a stream at depths between 0.09 and 0.75 metres. Multiply the total depth by 0.4 and set the sensor at this depth from the bottom (or 0.6 times the total depth from the water surface).
- V0.9: If the depth is less than 0.09m place the sensor in the water until it's just submerged and multiply the velocity by 0.9.
- Two point (V0.2 and V0.8): For depths over 0.75 metres the two point method is used (V0.2+V0.8)/2

Open Channel Flow Profiling Form

CDM Smith

Project: Environmental Monitoring of Former Mining Areas of Silvermines and Avoca

| Notes Stream Wick Weathe | Flow Conditions     | ions (mu<br>very<br>li Very<br>(i.e. terr | ddy, clear             | , debris etc<br>CMT &<br>W<br>Wind, pred | ):<br>Lgg(      | grou           |        | : 19.5m.  onewn sediment (  previous 24h       | Figure 1-2, (2, Posions).   |                              |
|--------------------------|---------------------|-------------------------------------------|------------------------|------------------------------------------|-----------------|----------------|--------|------------------------------------------------|-----------------------------|------------------------------|
| KNRX-                    | 7) At 411           | locati                                    | ons, tt                | e fPA                                    | hass            | varie          | d unid | dy to do with flu                              | id dys                      | AMICS,<br>Bridge             |
|                          | Distance<br>from IP | Width<br>(m)                              | Total<br>Depth<br>(cm) | V0.6                                     | V0.9            | V0.2           | V0.8   | Comments                                       | Depth<br>to<br>water<br>(m) | Depth<br>to<br>bottom<br>(m) |
| 1                        | 0                   | /                                         | 5                      | /                                        | 0               |                |        |                                                |                             |                              |
| 2                        | 1cm                 | 1000                                      | 12                     | 0:13                                     |                 |                |        |                                                |                             |                              |
| 3                        | 1                   | /                                         | 24                     | O·II<br>種·                               |                 |                | *      | Mound of boulders                              | ou is                       | eAchu                        |
| 4                        | 1                   | /                                         | 32                     | 0.20                                     |                 |                |        | Sabstrak comprised forliders, colders. Very li | Hlesilt +                   | snd.                         |
| 5                        | 1                   |                                           | 58                     | 0.10                                     |                 |                |        |                                                |                             | *e                           |
| 6                        | 1                   |                                           | 64                     | 0.2                                      |                 |                |        | Justo Characks of                              | flow dy                     | -                            |
| 7                        |                     |                                           | 44                     | 0.19.                                    |                 |                |        |                                                |                             |                              |
| 8                        |                     |                                           | 318                    |                                          | Poliph<br>W bon | bakun<br>lden. |        | Ever with FRATVALLUM TRANSPORT 16 (-0.14 70    |                             | ly war                       |
| 9                        |                     |                                           | 62.                    |                                          |                 |                |        | , 3 )                                          | ,                           |                              |
| 10                       |                     |                                           | 62                     |                                          |                 |                |        |                                                |                             |                              |
| 11                       |                     |                                           | 60                     |                                          |                 |                |        |                                                |                             | -                            |
| 12                       |                     |                                           | 62.                    |                                          |                 |                |        |                                                |                             |                              |

 $Q: $118000-118499 $\ 118174 $\ 40 \ Documents \ Generated $\ DG01\_Monitoring Plan\_Report \ Forms \ Open Channel \ Flow \ Record \ Sheet. dock and the property of the proper$ 

\$2 us hus for each neading! I FPA

0.13 @ SM.

Page 1 of 2



Project: Environmental Monitoring of Former Mining Areas of Silvermines and Avoca

|      |                     |              |                        |      | Velocity | (m/s) |      |          | From Bridge                 |                              |  |
|------|---------------------|--------------|------------------------|------|----------|-------|------|----------|-----------------------------|------------------------------|--|
|      | Distance<br>from IP | Width<br>(m) | Total<br>Depth<br>(cm) | V0.6 | V0.9     | V0.2  | V0.8 | Comments | Depth<br>to<br>water<br>(m) | Depth<br>to<br>bottom<br>(m) |  |
| U 13 | 4 1100 4000         |              | 72                     |      |          |       |      |          |                             |                              |  |
| 14   |                     |              | 68                     |      |          |       |      |          |                             |                              |  |
| 15   |                     |              | 44                     |      |          |       |      |          |                             |                              |  |
| 16   |                     |              | 56                     |      |          |       |      |          |                             |                              |  |
| 17   |                     |              | 34                     |      |          |       |      |          |                             |                              |  |
| 18   |                     |              | 34<br>40               |      |          |       |      |          |                             |                              |  |
| 19   |                     |              | 23                     |      |          |       |      |          |                             |                              |  |
| 20   |                     |              |                        |      |          |       |      | 6        |                             |                              |  |
| 21   |                     |              |                        |      |          |       |      |          |                             |                              |  |
| 22   |                     |              |                        |      |          |       |      |          |                             |                              |  |
| 23   |                     |              |                        |      |          |       |      |          |                             |                              |  |
| 24   |                     |              |                        |      |          |       |      |          |                             |                              |  |
| 25   |                     |              |                        |      |          |       |      |          |                             |                              |  |
| 26   |                     |              |                        |      |          |       |      |          |                             |                              |  |
| 27   |                     |              |                        |      |          |       |      |          |                             |                              |  |
| 28   |                     |              |                        |      |          |       |      |          |                             | 0.14                         |  |
| 29   |                     |              |                        |      |          |       |      |          |                             |                              |  |
| 30   |                     |              |                        |      |          |       |      |          |                             |                              |  |

- V0.6: Average velocity for a stream at depths between 0.09 and 0.75 metres. Multiply the total depth by 0.4 and set the sensor at this depth from the bottom (or 0.6 times the total depth from the water surface).
- V0.9: If the depth is less than 0.09m place the sensor in the water until it's just submerged and multiply the velocity by 0.9.
- Two point (V0.2 and V0.8): For depths over 0.75 metres the two point method is used (V0.2+V0.8)/2

CDM Smith

Project: Environmental Monitoring of Former Mining Areas of Silvermines and Avoca

| Site Name: 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Clarch Y                                            | and for A                     | (cers)  |                |                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------|---------|----------------|-----------------------------------|
| Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     | Time:                         | /       |                |                                   |
| Flow Meter Used:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | /                                                   |                               |         |                |                                   |
| Left Bank: 20 m 20 Cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.2m.                                              | Right Bank:                   | ()M.    |                |                                   |
| Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     |                               |         |                |                                   |
| Stream Flow Conditions (muddy, classification of the state of the stat | ear, debris etc):<br>photos faken.<br>I worky snatt | NO Algal gree<br>Shones + pel | bles on | affy<br>g bod. | 0.5                               |
| Weather Conditions (i.e. temperatu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ire, wind, precipitati                              | ion): white to                | Anon s  | untap          | Figure 1-2, (.2, .3, .5) Velocity |
| Surry, clean shy, wol, b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | neezy. No p                                         | he cip. in pro                | wious   | 24 h           | Positions                         |

|              |    |                     |              |                        | 2.4  | elocity ( | (m/s) |      |                    | From                        | Bridge                       |        |
|--------------|----|---------------------|--------------|------------------------|------|-----------|-------|------|--------------------|-----------------------------|------------------------------|--------|
|              |    | Distance<br>from IP | Width<br>(m) | Total<br>Depth<br>(cm) | V0.6 | V0.9      | V0.2  | V0.8 | Comments           | Depth<br>to<br>water<br>(m) | Depth<br>to<br>bottom<br>(m) |        |
| 20.2m        | 1  | 200                 |              | 4.                     | /    | 0         |       |      |                    |                             |                              |        |
| 20 м.        | 2  | 3 2 am              |              | 5                      | /    | 0         |       |      |                    |                             |                              |        |
| 1 Am         | 3  | 1m.                 |              | 13                     | 0.03 | /         |       |      |                    |                             |                              |        |
| 18m          | 4  | 1m                  |              | 10                     | 0.04 | 1         |       |      | A 1 0 10           |                             | ),                           |        |
| 17.3<br>17.3 | 5  | 1-3                 |              | 14                     | 0.08 | /         |       | X    | Lange Rock@ (=     | mx.                         | 17-3m                        | ; and  |
| 16-SM        | 6  | 0.8                 |              | 何23                    | 0.06 | /         |       |      |                    |                             |                              |        |
| 16 m         | 7  | 0.5                 |              | 12                     | 0.12 | /         |       |      | 1                  |                             |                              |        |
| 14.7         | 8  | 1.3                 |              | 44                     | 0.13 | /         |       |      | *Lange bolder bre. | ching                       | WA KM                        | @ ISMX |
| 14m          | 9  | 07                  |              | 44                     | 0.15 |           |       |      |                    |                             |                              |        |
| 13 M         | 10 | 1.0                 |              | 41                     | 0.10 |           |       |      |                    | 5.1.1.                      | 100                          | 10     |
| 12m          | 11 | 1.0.                |              | 41                     | /    | /         |       |      | *Large rock owned  | enean                       | 4/5 =4                       | 12m    |
| 12:3m        | 12 | 0.3                 |              | 42                     | 0.15 | /         |       |      | ,                  |                             |                              |        |

- V0.6: Average velocity for a stream at depths between 0.09 and 0.75 metres. Multiply the total depth by 0.4 and set the sensor at this depth from the bottom (or 0.6 times the total depth from the water surface).
- VO.9: If the depth is less than 0.09m place the sensor in the water until it's just submerged and multiply the velocity by 0.9.
- Two point (V0.2 and V0.8): For depths over 0.75 metres the two point method is used (V0.2+V0.8)/2



Project: Environmental Monitoring of Former Mining Areas of Silvermines and Avoca

|                |    |                     |              |                        | V     | elocity | (m/s) |      |             | From                        | Bridge                       |
|----------------|----|---------------------|--------------|------------------------|-------|---------|-------|------|-------------|-----------------------------|------------------------------|
|                |    | Distance<br>from IP | Width<br>(m) | Total<br>Depth<br>(cm) | V0.6  | V0.9    | V0.2  | V0.8 | Comments    | Depth<br>to<br>water<br>(m) | Depth<br>to<br>bottom<br>(m) |
| M .            | 13 | lm                  |              | 40                     | 0.14  |         |       |      |             |                             |                              |
| m              | 14 | lm                  |              | 41                     | 0.12  |         |       | j.   |             |                             |                              |
| M              | 15 | Im                  |              | 30                     | 0.08  |         |       |      |             |                             |                              |
| Зм.            | 16 | Im                  |              | 43                     | 0.12  |         |       |      |             |                             |                              |
| 7 M            | 17 | IM.                 |              | 48                     | 0.18  |         |       |      |             |                             |                              |
| Com            | 18 | In                  |              | 43                     | 81.0  |         |       |      |             |                             |                              |
| 5 <sub>M</sub> | 19 | M.                  |              | 52                     | 0.18. |         |       |      |             |                             |                              |
| 44             | 20 | IM                  |              | 44                     | 0.17  |         |       |      |             |                             |                              |
| 3~             | 21 | Im                  |              | 46                     | 0-22  |         |       |      |             |                             |                              |
| 2m             | 22 | In                  |              | 65.                    | 018.  |         |       |      |             |                             |                              |
| IM             | 23 | Im                  |              | 77                     | 0.18  |         |       |      |             |                             |                              |
| OM             | 24 | Im                  |              | 74                     | 0.18. |         |       |      |             |                             |                              |
|                | 25 |                     |              |                        |       |         |       |      |             |                             |                              |
|                | 26 |                     |              |                        |       |         |       |      |             |                             |                              |
|                | 27 |                     |              |                        |       |         |       |      |             |                             |                              |
|                | 28 |                     |              |                        |       |         |       |      |             |                             |                              |
|                | 29 |                     |              |                        |       |         |       |      | A SINGRADIA |                             | 2                            |
|                | 30 |                     |              |                        |       |         |       |      |             |                             |                              |

- V0.6: Average velocity for a stream at depths between 0.09 and 0.75 metres. Multiply the total depth by 0.4 and set the sensor at this depth from the bottom (or 0.6 times the total depth from the water surface).
- VO.9: If the depth is less than 0.09m place the sensor in the water until it's just submerged and multiply the velocity by 0.9.
- Two point (V0.2 and V0.8): For depths over 0.75 metres the two point method is used (V0.2+V0.8)/2



Project: Environmental Monitoring of Former Mining Areas of Silvermines and Avoca

| Site Name: 850 Adut AUS                                                                                                                                                        | · LF                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Date: 4 - 09 18                                                                                                                                                                | Time: 13.10pm                                  |
| Flow Meter Used: Yoursh He Bierney                                                                                                                                             |                                                |
| Left Bank: \$ 70m 2.05m                                                                                                                                                        | Right Bank: O, Bom                             |
| Notes  Stream Flow Conditions (muddy, clear, debris etc):  ADIT OTAGE PRECEPITATE  Weather Conditions (i.e. temperature, wind, precipitation of the condition)  Warm, Dy, Duny | on):  Figure 1-2. (.2. J. 5) Velocus Positions |

|      |    |                     |              |                        |      | /elocity | (m/s) |      |          | From Bridge                 |                              |
|------|----|---------------------|--------------|------------------------|------|----------|-------|------|----------|-----------------------------|------------------------------|
| ,    |    | Distance<br>from IP | Width<br>(m) | Total<br>Depth<br>(cm) | V0.6 | V0.9     | V0.2  | V0.8 | Comments | Depth<br>to<br>water<br>(m) | Depth<br>to<br>bottom<br>(m) |
| 2.07 | 1  | 0                   | 0            | 6.                     |      | 0.0      |       |      |          |                             |                              |
| 1.85 | 2  | 20                  | 0.2          | 6                      |      | 0-02     |       |      |          |                             |                              |
| 1-65 | 3  | 10                  | 0.2          | 7.5                    |      | 0.03     |       |      |          |                             |                              |
| 1-55 | 4  | 50                  | 0-1          | <b>8</b><br>7.5        |      | 0.01     |       |      |          |                             |                              |
| 1.35 | 5  | 70                  | 0-1          | 8                      |      | 0.04     | 4-    |      |          |                             |                              |
| 1.05 | 6  | 90                  | 0-1          | 7.7                    |      | 0.02     |       | 10-0 | 035      |                             |                              |
| 6.85 | 7  | 120                 | 0,20         | 9                      | 0.3  |          |       |      | 6.1      |                             |                              |
| 0.8  | 8  | 125                 | 0.05         | 10                     | . 4  | 0-1      |       |      |          |                             |                              |
|      | 9  |                     |              |                        |      |          |       |      |          |                             |                              |
|      | 10 |                     |              |                        |      |          |       |      |          |                             |                              |
| 1    | 11 |                     |              |                        |      |          |       |      |          |                             |                              |
|      | 12 |                     |              |                        |      |          |       |      |          |                             |                              |

- V0.6: Average velocity for a stream at depths between 0.09 and 0.75 metres. Multiply the total depth by 0.4 and set the sensor at this depth from the bottom (or 0.6 times the total depth from the water surface).
- V0.9: If the depth is less than 0.09m place the sensor in the water until it's just submerged and multiply the velocity by 0.9.
- Two point (V0.2 and V0.8): For depths over 0.75 metres the two point method is used (V0.2+V0.8)/2

CDM Smith

Project: Environmental Monitoring of Former Mining Areas of Silvermines and Avoca

| Site Name:                                                | and A                                                     | det Confl                                                  | hiera.                                |             |                                |
|-----------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|---------------------------------------|-------------|--------------------------------|
| Date: 04.                                                 | Sept. 18.                                                 | 7                                                          | Time:                                 | 10:30.      |                                |
| Flow Meter Used                                           | 1: "Wansh                                                 | Mª Binne                                                   | ly                                    |             |                                |
|                                                           | 50 cm                                                     | 10.5m                                                      | Right Ba                              | 100 0       | / lar.                         |
| Notes Stream Flow Con Clide Weather Condition Dry, Surny, | ditions (mudd<br>anen, un<br>ons (i.e. tempe<br>breezy, m | y, clear, debris etc)  Polis herbeck  Prature, wind, preci | :<br>!, NOT ARM<br>evo<br>ipitation): | 4 feel No 1 | Figure 1-2, t.2, 3, 5, Velocin |

|                     |     |                     |              |                        |       | Velocity | (m/s) |      |           | From Bridge                 |                              |
|---------------------|-----|---------------------|--------------|------------------------|-------|----------|-------|------|-----------|-----------------------------|------------------------------|
|                     |     | Distance<br>from IP | Width<br>(m) | Total<br>Depth<br>(cm) | V0.6  | V0.9     | V0.2  | V0.8 | Comments  | Depth<br>to<br>water<br>(m) | Depth<br>to<br>bottom<br>(m) |
|                     | 1   | 0                   | _            | 12                     | 0.16. | 1        |       | 100  | 9         |                             | -                            |
|                     | 2   | 10                  | 0.1          | 13                     | 0.22  | /        |       | 4    | 4         |                             |                              |
| @ 70) -             | 3   | 20                  | 0-1          | 12                     | 0-16  |          |       | .N.  |           |                             | .*                           |
| (@ 70) -<br>(0 & w) | 4   | 30                  | 0-1          | 10                     | 0-12  | /        |       |      | A Comment |                             |                              |
|                     | 5   | 40                  | 0.1          | 10                     | 0.16  | /        |       |      |           |                             |                              |
| D (/m)-             | - 6 | 50                  | 0.1          | 3                      | /     | 0.11     |       |      | 4         |                             |                              |
|                     | 7   | 60                  | 0.1          | 5                      | /     | 0.01     | *     |      | 100       |                             |                              |
|                     | 8   | ~                   |              |                        |       |          | _     |      |           |                             | _                            |
|                     | 9   | 5                   | _            | 12                     | 0.24  | /        |       |      |           |                             |                              |
|                     | 10  | 15                  | /            | 13                     | 0.17  | /        | ķ     |      | 17        |                             |                              |
|                     | 11  |                     |              |                        |       |          |       |      |           |                             |                              |
|                     | 12  |                     |              |                        |       |          |       | -    |           |                             |                              |

- V0.6: Average velocity for a stream at depths between 0.09 and 0.75 metres. Multiply the total depth by 0.4 and set the sensor at this depth from the bottom (or 0.6 times the total depth from the water surface).
- $V0.9: If the depth is less than \ 0.09m-place the sensor in the water until it's just submerged and multiply the velocity by \ 0.9.$
- Two point (V0.2 and V0.8): For depths over 0.75 metres the two point method is used (V0.2+V0.8)/2

CDM Smith

Project: Environmental Monitoring of Former Mining Areas of Silvermines and Avoca

| A 11 %                                                                                    |                                          |
|-------------------------------------------------------------------------------------------|------------------------------------------|
| Site Name: Deep dat                                                                       |                                          |
| Date: 04- Sept- 18.                                                                       | Time: 12: 10.                            |
| Flow Meter Used: Warsh US Binney.                                                         | XNB: Always A                            |
| Left Bank: O CM                                                                           | Right Bank: 50 CM.                       |
| Notes                                                                                     |                                          |
| Stream Flow Conditions (muddy, clear, debris etc):<br>Riffle on Surface, FAST flowing but | OK. No Area found "" with glide.         |
| Weather Conditions (i.e. temperature, wind, precipitation                                 | Figure 1-2 c.2. 3. 51 Velocity Positions |

|           |     |                  |              |                      |         | Velocity | (m/s) |      |          | From Bridge                 |                              |  |
|-----------|-----|------------------|--------------|----------------------|---------|----------|-------|------|----------|-----------------------------|------------------------------|--|
|           |     | Distance from IP | Width<br>(m) | Total Depth (em) (M) | V0.6    | V0.9     | V0.2  | V0.8 | Comments | Depth<br>to<br>water<br>(m) | Depth<br>to<br>bottom<br>(m) |  |
| (a 60cm)- | - 1 | 0.               | 003          | 003                  | ON BOOK | 7        |       |      |          |                             |                              |  |
| ( 70cm)   | 2   | 0.1              | 0.           |                      | 0.33-   | 7        |       |      |          |                             |                              |  |
| 80cm      | 3   | 0.1              | /            | 0-06                 | /       | 0-21     | 0.23  |      |          |                             |                              |  |
| 90cm      | 4   | 0.1              | /            | 005                  | /       | 0.22     |       |      |          |                             |                              |  |
| (Im)      | 5   | 0.1              | /            | 005                  | /       | 0.26     |       |      |          |                             |                              |  |
| 1-01m     | 6   | 0.1              | /            | 0.04                 | /       | O-285    |       |      |          |                             |                              |  |
| 1-20      | 7   | 0-1              | /            | 0.06                 |         | 0.25     |       |      |          |                             |                              |  |
| 1.3m      | 8   | 0-1              | /            | 0.05                 | /       | 0-13     |       |      |          |                             |                              |  |
| 1-4m      | 9   | 0.1              | /            | 0.02                 | /       | 0.06     |       |      |          |                             |                              |  |
| 1.5M      | 10  | 0.1              | /            | 0-005                | /       | 0-0      |       |      |          |                             |                              |  |
| -         | 11  |                  |              |                      |         |          |       |      |          |                             |                              |  |
| @ 65cm    | 12  | 0.050            |              | 0.05                 | /       | 0-24     | ,     |      |          |                             |                              |  |

- V0.6: Average velocity for a stream at depths between 0.09 and 0.75 metres. Multiply the total depth by 0.4 and set the sensor at this depth from the bottom (or 0.6 times the total depth from the water surface).
- V0.9: If the depth is less than 0.09m place the sensor in the water until it's just submerged and multiply the velocity by 0.9.
- Two point (V0.2 and V0.8): For depths over 0.75 metres the two point method is used (V0.2+V0.8)/2



Project: Environmental Monitoring of Former Mining Areas of Silvermines and Avoca

| Site Name: MWDAI ".                                | Site Code: MUDA]                             |
|----------------------------------------------------|----------------------------------------------|
| Date: 13 Sept 2018.                                | Sample Depth (metres bTOC) Target: 1 Actual: |
| Initial Static Water Level (metres bTOC): 6.285    | Purging/Sampling Device:                     |
| Well diameter (mm):                                | Purge start time: 5:32.                      |
| Well depth (metres):                               | Sample collection time:                      |
| Well Volume:                                       | Sample Number:                               |
| Print Sampler Name:                                | Samplers Signature: 45 + LF                  |
| Comments: Water in Kisly light savay brown in what | An destruction was encountered @ en. 11 m    |

|        | Time<br>lapsed<br>(mins) | Water<br>Level<br>(m bTOC) | Drawdown<br>(m) | Flow Rate<br>(ml/min) | Temp. (°C) | рН   | Cond.<br>(μs/cm) | Dissolved Oxygen (%) | Dissolved Oxygen (mg/L) | ORP<br>(mV) | Comments    |
|--------|--------------------------|----------------------------|-----------------|-----------------------|------------|------|------------------|----------------------|-------------------------|-------------|-------------|
|        |                          | < 0.1 m                    |                 |                       | ±3 (°C)    | ±0.1 | ±3 %             |                      | ±10 %                   | ±10 %       |             |
|        | 0                        | 6.285                      |                 |                       | 128        | 2-86 | 1608             | 44.5                 | 4.18                    | 291         | O litres    |
| 15:37- | 15                       | 6.27                       |                 |                       | 1,3.0      | 2.84 | 1642             | 6.5                  | 0.69                    | 344         | 1º7 letrus  |
| 15:42- | 4 10                     | 6.29                       |                 |                       | 13.0       | 2.79 | 1699             | 3.0                  | 0.29                    | 386.        | 3.5 litres. |
| 15:47  | + 15                     | 6.285.                     |                 |                       | 13.4       | 2.79 | 1693             | 2.2                  | 0.23                    | 405         | 5.0 lynn    |
| 15 52- | 1 20                     | 6.295                      |                 |                       | 13.0       | 2.79 | 1695             | 3.6                  | 0.37                    | 410         | 6.5 litres. |
| 15.58  | + 26                     | 6.29                       |                 |                       | 13.0       | 2.80 | 1672             | 3.0                  | 0.30                    | 410         | 7.5 letres  |
|        |                          |                            |                 |                       |            |      |                  |                      |                         |             |             |
| -      |                          |                            |                 |                       |            | i i  |                  |                      |                         |             |             |
|        |                          |                            |                 |                       |            |      |                  |                      |                         |             |             |
|        |                          |                            |                 |                       |            |      |                  |                      |                         |             |             |
| -      |                          |                            |                 |                       |            |      |                  |                      |                         |             |             |
|        |                          |                            |                 |                       |            |      |                  |                      |                         |             |             |

- Collect readings at 5 to 10 minute intervals.
- The well is considered stabilised and ready for sampling when the indicator parameters have stabilised for three consecutive readings.
- Flow rate should not exceed 500 ml/minute during purging or 250 ml/minute during sampling.

CDN Smith

Project: Environmental Monitoring of Former Mining Areas of Silvermines and Avoca

| Site Name: MUDA 2                                | Site Code: UWD AZ             |               |  |  |  |  |  |
|--------------------------------------------------|-------------------------------|---------------|--|--|--|--|--|
| Date: 13 Sept 2018                               | Sample Depth (metres bTOC)    | Actual:       |  |  |  |  |  |
| Initial Static Water Level (metres bTOC): 6.395M | Purging/Sampling Device:      | Target: 24 9M |  |  |  |  |  |
| Well diameter (mm):                              | Purge start time:             |               |  |  |  |  |  |
| Well depth (metres):                             | Sample collection time: 15:27 |               |  |  |  |  |  |
| Well Volume:                                     | Sample Number:                |               |  |  |  |  |  |
| Print Sampler Name: AoS + CF                     | Samplers Signature: Les + LE  |               |  |  |  |  |  |
| Comments:                                        | 14342                         |               |  |  |  |  |  |

|         | Time<br>lapsed<br>(mins) | Water<br>Level<br>(m bTOC) | Drawdown<br>(m) | Flow Rate<br>(ml/min) | Temp. (°C) | рН   | Cond.<br>(µs/cm) | Dissolved<br>Oxygen (%) | Dissolved Oxygen (mg/L) | ORP<br>(mV) | Comments      |
|---------|--------------------------|----------------------------|-----------------|-----------------------|------------|------|------------------|-------------------------|-------------------------|-------------|---------------|
|         |                          | < 0.1 m                    | ÷               |                       | ±3 (°C)    | ±0.1 | ±3 %             |                         | ±10 %                   | ±10 %       |               |
| 11.55   | 0                        |                            |                 |                       | 130        | 34   | 1616             | 27:4                    | 728                     | 273         |               |
| 14;59 - | +5                       | 6.38 M.                    |                 |                       | 11.8       | 3.75 | 1637             | 6.1                     | 0.63                    | 233         | 3 litres.     |
| 15:04.  | +10                      | 6.45M                      |                 |                       | 11.8       | 3.72 | 1635             | 3.0                     | 0.33                    | 236         | 5 litres      |
| 15:09   | 15                       | 6.445M                     |                 |                       | 12.0       | 3.74 | 1638             | 2.5                     | 0.59                    | 236         | 6.5 litres -k |
| 15:14 . | - 20                     | 6.455M                     |                 |                       | 12.0       | 3.74 | 1632             | 204                     | 0.25                    | 239.        | 7.2 litues -  |
| 15:19   | 25                       | 6.46m                      |                 |                       | 12.0       | 3.73 | 1625             | 2.1                     | 0.22                    | 240         | 8.0 litres -  |
|         |                          |                            |                 |                       |            |      |                  |                         |                         |             |               |
|         |                          |                            |                 |                       |            |      |                  |                         |                         |             |               |
|         |                          |                            |                 |                       |            |      | 100.00           |                         |                         |             |               |
|         |                          |                            |                 |                       |            |      |                  |                         |                         |             |               |
|         |                          |                            |                 |                       |            |      |                  |                         |                         |             |               |
|         |                          | 1                          |                 |                       |            |      |                  |                         |                         |             |               |

- Collect readings at 5 to 10 minute intervals.
- The well is considered stabilised and ready for sampling when the indicator parameters have stabilised for three consecutive readings.
- Flow rate should not exceed 500 ml/minute during purging or 250 ml/minute during sampling.



Project: Environmental Monitoring of Former Mining Areas of Silvermines and Avoca

| Site Name: "MWDA 1                               | Site Code: MWDAI                           |
|--------------------------------------------------|--------------------------------------------|
| Date: 06 - 09 - 18                               | Sample Depth (metres bTOC) Target: Actual: |
| Initial Static Water Level (metres bTOC): 6 , 39 | Purging/Sampling Device:                   |
| Well diameter (mm):                              | Purge start time: 13 - 13                  |
| Well depth (metres):                             | Sample collection time: \3 - 45            |
| Well Volume:                                     | Sample Number:                             |
| Print Sampler Name:                              | Samplers Signature: LF LAOS                |
| Comments: Was raway Hil                          | 10 ; Overland                              |

|    | Time<br>lapsed<br>(mins) | Water<br>Level<br>(m bTOC) | Drawdown<br>(m) | Flow Rate<br>(ml/min) | Temp. (°C) | рН   | Cond.<br>(µs/cm)              | Dissolved<br>Oxygen (%) | Dissolved Oxygen (mg/L) | ORP<br>(mV) | Comments      |
|----|--------------------------|----------------------------|-----------------|-----------------------|------------|------|-------------------------------|-------------------------|-------------------------|-------------|---------------|
|    |                          | < 0.1 m                    |                 |                       | ±3 (°C)    | ±0.1 | ±3 %                          |                         | ±10 %                   | ±10 %       |               |
|    | 0                        |                            |                 |                       | 12.3.      | 2.80 | 1676                          | 41.3                    | 33.87                   | 430         |               |
|    | 5                        | 6.40                       |                 |                       | 12-4       | 2.79 | 11                            | 5.4                     | 0.58                    | 433         | 36.           |
|    | 10                       | 6.398                      |                 |                       | 12.6       | 2.78 | 1693                          | 3.6                     | 0.36                    | 436         | 5人            |
| +  | 15                       | 6.40                       |                 |                       | 1 /        | 2-79 | 1688                          | 2.4                     | 0.25                    | 436         | 7.25          |
| -  | 19                       | 6.40                       |                 |                       | 11         | 2.79 | 1691                          | 2.2                     | 0.22                    | 436         | 7.75/ @ 13:31 |
| 7. | 24                       | 6.40                       |                 |                       | 127        | 9 %  | 1688                          | 1,9                     | 0.20                    | 435.        | 9.75          |
| 2  | 29                       | 6.40                       |                 |                       | 1209       | 2079 | 1688                          | 2-2                     | 0.24                    | 437.        | 12.25         |
|    |                          |                            |                 |                       |            |      |                               |                         |                         |             |               |
|    |                          |                            |                 |                       |            |      | erassingly to an extension of |                         |                         |             |               |
| _  |                          |                            |                 |                       |            |      |                               |                         |                         |             |               |
|    |                          |                            |                 | - · ·                 |            |      |                               |                         |                         |             |               |
|    |                          |                            |                 |                       |            |      |                               |                         | -                       |             |               |

### Notes:

- Collect readings at 5 to 10 minute intervals.
- The well is considered stabilised and ready for sampling when the indicator parameters have stabilised for three consecutive readings.
- Flow rate should not exceed 500 ml/minute during purging or 250 ml/minute during sampling.

12.15

Project: Environmental Monitoring of Former Mining Areas of Silvermines and Avoca

| Khonged under    | MWDXI  | So frist | CDM<br>Smith |
|------------------|--------|----------|--------------|
| 3 readings. Then | loggid | under of | WD.42.       |

| Site Name: " MWAA Z                               | Site Code: MWDAZ           |         |           |  |  |  |  |
|---------------------------------------------------|----------------------------|---------|-----------|--|--|--|--|
| Date: 06.09.18                                    | Sample Depth (metres bTOC) | Target: | Actual: 7 |  |  |  |  |
| Initial Static Water Level (metres bTOC): 6 . 495 | Purging/Sampling Device:   | avia    |           |  |  |  |  |
| Well diameter (mm):                               | Purge start time: 12       |         |           |  |  |  |  |
| Well depth (metres):                              | Sample collection time:    |         |           |  |  |  |  |
| Well Volume:                                      | Sample Number:             |         |           |  |  |  |  |
| Print Sampler Name:                               | Samplers Signature:        | · Aus   |           |  |  |  |  |
| Comments: Ravials, Wef, over                      |                            |         |           |  |  |  |  |

| Time<br>lapsed<br>(mins) | Water<br>Level<br>(m bTOC) | Drawdown<br>(m) | Flow Rate<br>(ml/min) | Temp. (°C) | рН   | Cond.<br>(μs/cm) | Dissolved<br>Oxygen (%) | Dissolved Oxygen (mg/L) | ORP<br>(mV) | Comments              |
|--------------------------|----------------------------|-----------------|-----------------------|------------|------|------------------|-------------------------|-------------------------|-------------|-----------------------|
|                          | < 0.1 m                    |                 |                       | ±3 (°C)    | ±0.1 | ±3 %             |                         | ±10 %                   | ±10 %       |                       |
| \                        |                            |                 |                       | 11 - 1     | 3.75 | 1637             | 10-5                    | 1-14                    | 279         |                       |
| 21 5                     | 6.59                       |                 |                       | 12 .       | 3.78 | 1638             | 9.0                     | 0.96                    | 265.        | 1.3 Oitur -           |
| 26 10                    | 6.58                       |                 |                       | 11.3       | 3.78 | 1640             | 4.7                     | 0.50                    | 262.        | 4.2 litres -          |
| 3 15                     | 6.57                       |                 |                       | 11,4       | 3.77 | 1632             | 2602                    | 1.20                    | 263         | 1) litrus (+          |
| 30 20                    | 6.57                       |                 |                       | 11.8.      | 3073 | 1618             | 6.6                     | 0.69                    | 269         | + 3.2 = 12 litre      |
| 4/25                     | 6,54                       |                 |                       | 11.6       | 3.73 | 1603             | 2.2                     | 0.24                    | 272         | 260 = 14.80iknos      |
| 46/20                    | 6155.                      |                 |                       | 11.8-      | 3.69 | 1579             | 2.0                     | 0.21                    | 278.        | @7.2 (11.2 = 16 lifty |
|                          |                            |                 |                       |            |      |                  |                         |                         |             |                       |
|                          |                            |                 | 4                     |            |      |                  |                         |                         |             |                       |
|                          |                            |                 |                       |            |      |                  |                         |                         |             |                       |
|                          |                            |                 |                       |            |      |                  |                         |                         |             |                       |

- Collect readings at 5 to 10 minute intervals.
- The well is considered stabilised and ready for sampling when the indicator parameters have stabilised for three consecutive readings.
- Flow rate should not exceed 500 ml/minute during purging or 250 ml/minute during sampling.



Project: Environmental Monitoring of Former Mining Areas of Silvermines and Avoca

| Site Name: GW1-05"                                  | Site Code: Gw 2-05                             |  |  |  |  |  |  |
|-----------------------------------------------------|------------------------------------------------|--|--|--|--|--|--|
| Date: 06 Sept 2018,                                 | Sample Depth (metres bTOC) Target: Actual:     |  |  |  |  |  |  |
| Initial Static Water Level (metres bTOC): 5 · 735 m | Purging/Sampling Device:                       |  |  |  |  |  |  |
| Well diameter (mm):                                 | Purge start time: 17:15                        |  |  |  |  |  |  |
| Well depth (metres): 6.51M                          | Sample collection time: 17:36                  |  |  |  |  |  |  |
| Well Volume:                                        | Sample Number:                                 |  |  |  |  |  |  |
| Print Sampler Name: AoS + L.F.                      | Samplers Signature: 6 South                    |  |  |  |  |  |  |
| Comments: digiornasy, mild.                         | * Trubid, brown i day-like water. Alors sill & |  |  |  |  |  |  |

| Time<br>lapsed<br>(mins) | Water<br>Level<br>(m bTOC) | Drawdown (m) | Flow Rate<br>(ml/min) | Temp. (°C) | рН   | Cond.<br>(µs/cm) | Dissolved<br>Oxygen (%) | Dissolved Oxygen (mg/L) | ORP<br>(mV) | Comments      |
|--------------------------|----------------------------|--------------|-----------------------|------------|------|------------------|-------------------------|-------------------------|-------------|---------------|
| 0                        | < 0.1 m                    |              |                       | ±3 (°C)    | ±0.1 | ±3 %             |                         | ±10 %                   | ±10 %       |               |
| 7                        | 5.74m                      |              |                       | 12.6       | 3.66 | 1427             | 742                     | 7.81                    | 298.        | 3 litres pur  |
| 11                       | 5-73Cm                     |              |                       | 12.2       | 3.53 | 1420             | 656                     | 6.88                    | 30k         | 6 likus pur   |
| 14                       | 6.735M                     |              |                       | 12-3       | 3.53 | 1422             | 62.7                    | 6.68.                   | 318         | 7 Pitrus 1119 |
| 17                       | 5-735M                     |              |                       | 12.2       | 3,52 | 1420             | 65.9                    | 7003                    | 329         | 8. litus.     |
| 19.                      | 5.74                       |              |                       | 12.1       | 3.52 | 1470             | 62.6                    | 6.66                    | 337         | 9 litrus      |
|                          |                            |              | -                     |            |      |                  |                         |                         |             |               |
|                          |                            |              |                       |            |      |                  |                         |                         |             |               |
|                          |                            |              |                       |            |      |                  |                         |                         |             |               |
|                          |                            |              |                       |            |      |                  |                         |                         |             |               |
|                          |                            |              |                       |            |      |                  |                         |                         |             |               |
|                          |                            | ν.           |                       | =          |      |                  |                         |                         |             |               |

### Notes:

- Collect readings at 5 to 10 minute intervals.
- The well is considered stabilised and ready for sampling when the indicator parameters have stabilised for three consecutive readings.
- Flow rate should not exceed 500 ml/minute during purging or 250 ml/minute during sampling.

IOCX

Page 1 of 2

178 CM

Q:\118000-118499\118174\40 Documents Generated\DG01\_MonitoringPlan\_Report\Forms\Low Flow GW Sampling Sheet.docx



Project: Environmental Monitoring of Former Mining Areas of Silvermines and Avoca

| Site Name: Gw 1 / 05                             | Site Code:                                      |  |  |  |  |  |
|--------------------------------------------------|-------------------------------------------------|--|--|--|--|--|
| Date: O7 Supt 2018.                              | Sample Depth (metres bTOC) Target: 25.3 Actual: |  |  |  |  |  |
| Initial Static Water Level (metres bTOC): 5.585M | Purging/Sampling Device: Balen                  |  |  |  |  |  |
| Well diameter (mm): 50mm                         | Purge start time: 09:15.                        |  |  |  |  |  |
| Well depth (metres):                             | Sample collection time: 09: 55                  |  |  |  |  |  |
| Well Volume:                                     | Sample Number:                                  |  |  |  |  |  |
| Print Sampler Name: Aos + LF                     | Samplers Signature: Jollen                      |  |  |  |  |  |
| Comments: Bright, day, surry, wild Fool.         |                                                 |  |  |  |  |  |

|   | Time<br>lapsed<br>(mins) | Water<br>Level<br>(m bTOC) | Drawdown<br>(m) | Flow Rate<br>(ml/min) | Temp. (°C) | рН   | Cond.<br>(μs/cm) | Dissolved<br>Oxygen (%) | Dissolved Oxygen (mg/L) | ORP<br>(mV) | Comments       |
|---|--------------------------|----------------------------|-----------------|-----------------------|------------|------|------------------|-------------------------|-------------------------|-------------|----------------|
|   |                          | < 0.1 m                    |                 |                       | ±3 (°C)    | ±0.1 | ±3 %             |                         | ±10 %                   | ±10 %       |                |
|   |                          | 5.685                      |                 |                       | 11.9       | 3.62 | 1441             | 60.9                    | 6.50.                   | 352         | 1.5 letrus sus |
|   |                          | 5.58                       |                 |                       | 11.4       | 3.59 | 1467             | 65.4                    | 7.24                    | 370         | 65 likes per   |
| - | 5.485                    | 8 5KS                      |                 |                       | 11.4       | 3.55 | 1543             | 66.4                    | 7.22                    | 389         | to litrus -    |
|   | 5-915M                   | 5:\$58                     |                 |                       | 11-1       | 3.61 | 1663             | 550                     | 5.97                    | 403         | the litrus _   |
|   | 5.585                    | •                          |                 |                       | 11-1       | 3.61 | 1678             | 48.2                    | 4.93                    | 413         | \$10 = 38 lite |
|   | 5.58                     |                            |                 |                       | 11.1       | 3.62 | 1670             | 39.5                    | 4-30                    | 407         | HO = 48.       |
|   |                          |                            |                 |                       |            |      |                  |                         |                         |             |                |
|   |                          |                            |                 | l ·                   |            |      |                  |                         |                         |             |                |
|   |                          |                            |                 |                       |            |      |                  |                         |                         |             |                |
|   |                          |                            |                 |                       |            |      |                  |                         |                         |             |                |
|   |                          |                            |                 |                       |            |      |                  |                         |                         |             |                |
|   |                          |                            |                 |                       |            |      |                  |                         |                         |             |                |

- Collect readings at 5 to 10 minute intervals.
- The well is considered stabilised and ready for sampling when the indicator parameters have stabilised for three consecutive readings.
- Flow rate should not exceed 500 ml/minute during purging or 250 ml/minute during sampling.



Project: Environmental Monitoring of Former Mining Areas of Silvermines and Avoca

| Site Name: MWPF 1.                              | Site Code:                                         |  |  |  |  |  |  |
|-------------------------------------------------|----------------------------------------------------|--|--|--|--|--|--|
| Date: 06.09.2018                                | Sample Depth (metres bTOC) Target: 4.7.7.7 Actual: |  |  |  |  |  |  |
| Initial Static Water Level (metres bTOC): 4 8 3 | Purging/Sampling Device: was pump                  |  |  |  |  |  |  |
| Well diameter (mm):                             | Purge start time: 10 - 42                          |  |  |  |  |  |  |
| Well depth (metres):                            | Sample collection time: \\ - 20                    |  |  |  |  |  |  |
| Well Volume:                                    | Sample Number:                                     |  |  |  |  |  |  |
| Print Sampler Name: AOS                         | Samplers Signature:                                |  |  |  |  |  |  |
| Comments: Overcest e spittar's ravi             |                                                    |  |  |  |  |  |  |

| Time<br>lapsed<br>(mins) | Water<br>Level<br>(m bTOC) | Drawdown (m) | Flow Rate<br>(ml/min) | Temp. (°C) | рН     | Cond.<br>(μs/cm) | Dissolved<br>Oxygen (%) | Dissolved Oxygen (mg/L) | ORP<br>(mV) | Comments   |
|--------------------------|----------------------------|--------------|-----------------------|------------|--------|------------------|-------------------------|-------------------------|-------------|------------|
|                          | < 0.1 m                    |              |                       | ±3 (°C)    | ±0.1   | ±3 %             |                         | ±10 %                   | ±10 %       |            |
| 0                        |                            |              |                       | 10.6       | 4-95   | 13 8             | 35.0                    | 3-76                    | 257.        |            |
| 5                        | 4 835                      |              |                       | 10.9       | 4.12   | 11               | 29.4                    | 3.24                    | 299.        | 3.52       |
| 10                       | 4.84                       |              |                       | 11.0       | 4.29   | 11               | 28.1                    | 3.09                    | 296         | 5.21       |
| 15                       | 4 845                      |              |                       | 11.3       | 4.48   | 11               | 28.3                    | 3.12                    | 293         | 6.75 (+ 6. |
| 20                       | 4.845                      | . 7          |                       | 10.8       | 4.43   | 139              | 28.8                    | 3.19                    | 301         | 8-75 (+2   |
| 25                       | 4-845                      |              |                       | 10.9       | 4.50   | 12               | (1)                     | 3.18                    | 302         | 10.75 CHT  |
| 30                       | 11                         |              |                       | 11         | 4 - 55 | 140              | 29.1                    | 3.20                    | 303         | 12.75 (F2  |
| 35                       | 11                         |              |                       | 11.0       | 4.59   | 11               | 29.7                    | 3-28                    | 304         | 14.SL.     |
|                          |                            |              |                       |            |        |                  |                         |                         |             |            |
|                          |                            |              |                       |            |        |                  |                         |                         |             |            |
|                          |                            | -            |                       |            |        |                  |                         |                         |             |            |
|                          |                            |              |                       |            |        |                  |                         | -                       |             |            |

- Collect readings at 5 to 10 minute intervals.
- The well is considered stabilised and ready for sampling when the indicator parameters have stabilised for three consecutive readings.
- Flow rate should not exceed 500 ml/minute during purging or 250 ml/minute during sampling.



Project: Environmental Monitoring of Former Mining Areas of Silvermines and Avoca

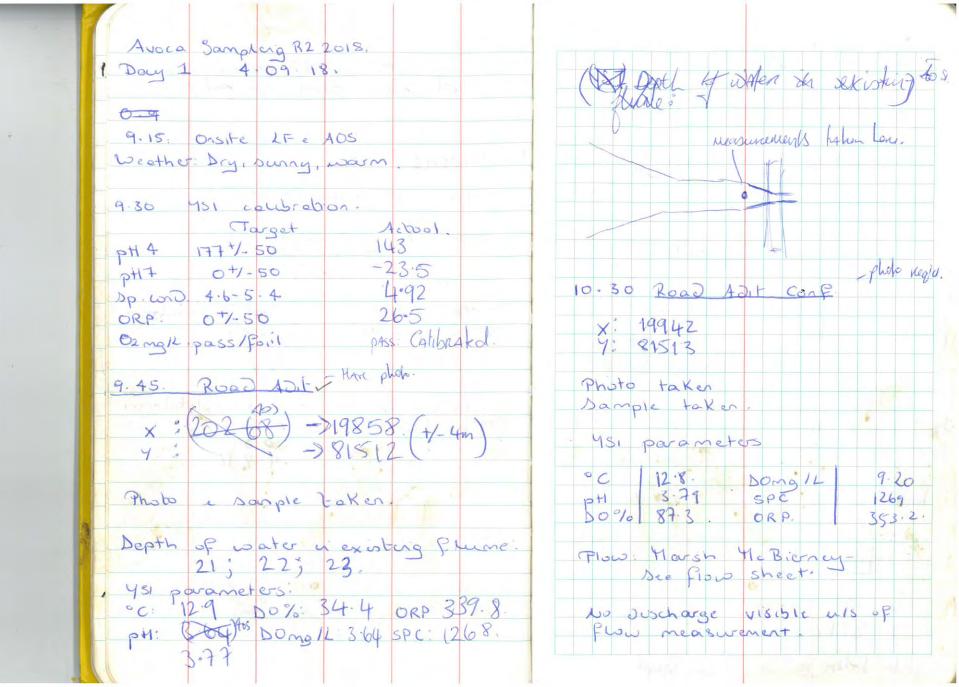
| Site Name: "MW ET 1                             | Site Code: MWET1                                   |
|-------------------------------------------------|----------------------------------------------------|
| Date: 06.09.18                                  | Sample Depth (metres bTOC) Target: 9,6 Actual: 9.6 |
| Initial Static Water Level (metres bTOC): 7 63  | Purging/Sampling Device:                           |
| Well diameter (mm):                             | Purge start time: 14 · 35                          |
| Well depth (metres):                            | Sample collection time: (5 6 0 2                   |
| Well Volume:                                    | Sample Number:                                     |
| Print Sampler Name: Name: Aob                   | Samplers Signature: 40 Ven                         |
| Comments: Welf, wild oranger. Rain this usening | water very turbo bown of a seriment                |

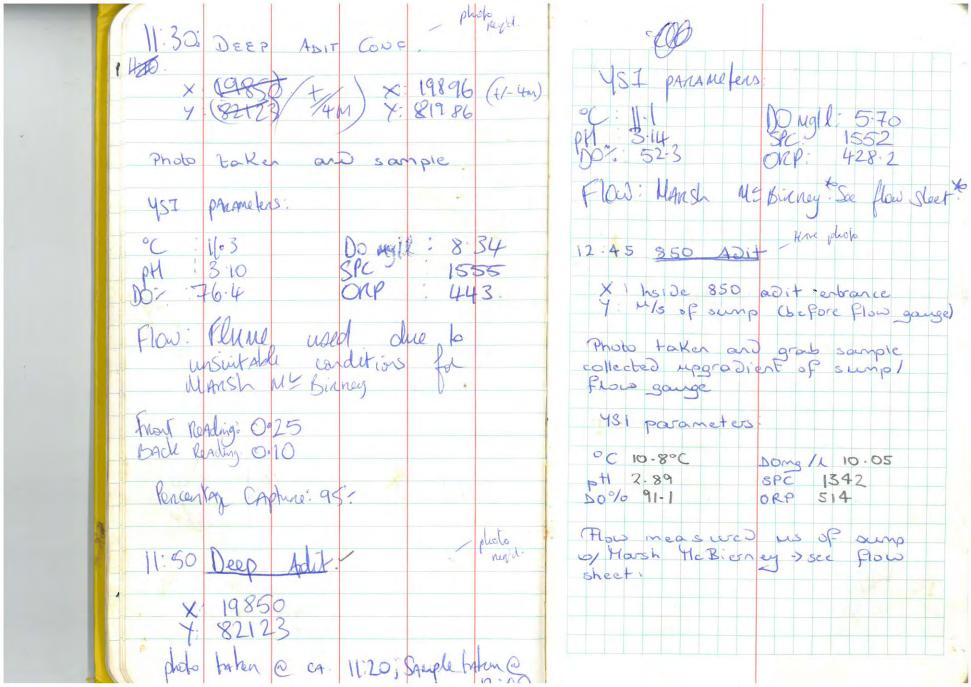
| Time<br>lapsed<br>(mins) | Water<br>Level<br>(m bTOC) | Drawdown<br>(m) | Flow Rate<br>(ml/min) | Temp. (°C) | рН   | Cond.<br>(µs/cm) | Dissolved<br>Oxygen (%) | Dissolved Oxygen (mg/L) | ORP<br>(mV) | Comments   |
|--------------------------|----------------------------|-----------------|-----------------------|------------|------|------------------|-------------------------|-------------------------|-------------|------------|
|                          | < 0.1 m                    |                 |                       | ±3 (°C)    | ±0.1 | ±3 %             |                         | ±10 %                   | ±10 %       |            |
| 0                        |                            |                 |                       | 11.0       | 3.77 | 2412             | 13.2                    | 1.22                    | 290         |            |
| 5+10                     | 7.635                      |                 |                       | 1103       | 3.30 | 2475             | 7.1                     | 0.33                    | 321         | 5.5 litres |
| 50 + 15                  | 7.64                       |                 |                       | 11.7       | 3.30 | 2465             | 4.1                     | 0:45                    | 321         | Flitner    |
| 55+20                    | 7,64                       |                 |                       | 11.8       | 3.30 | 2459             | 3.6                     | 0.41                    | 319.        | 7.2 Oitus  |
| 60+25.                   | 7.645.                     |                 |                       | 1201       | 3-31 | 2455             | 3.9                     | 0.43                    | 316         | 7-8        |
|                          |                            |                 |                       |            |      |                  |                         |                         |             |            |
|                          |                            |                 |                       |            |      |                  |                         |                         |             |            |
|                          |                            |                 |                       | -          |      |                  |                         |                         |             |            |
|                          |                            |                 |                       |            |      |                  |                         |                         |             |            |
|                          |                            |                 |                       |            |      |                  |                         |                         |             |            |
|                          |                            |                 |                       |            |      |                  |                         |                         |             |            |
|                          |                            |                 |                       |            |      |                  |                         |                         |             |            |

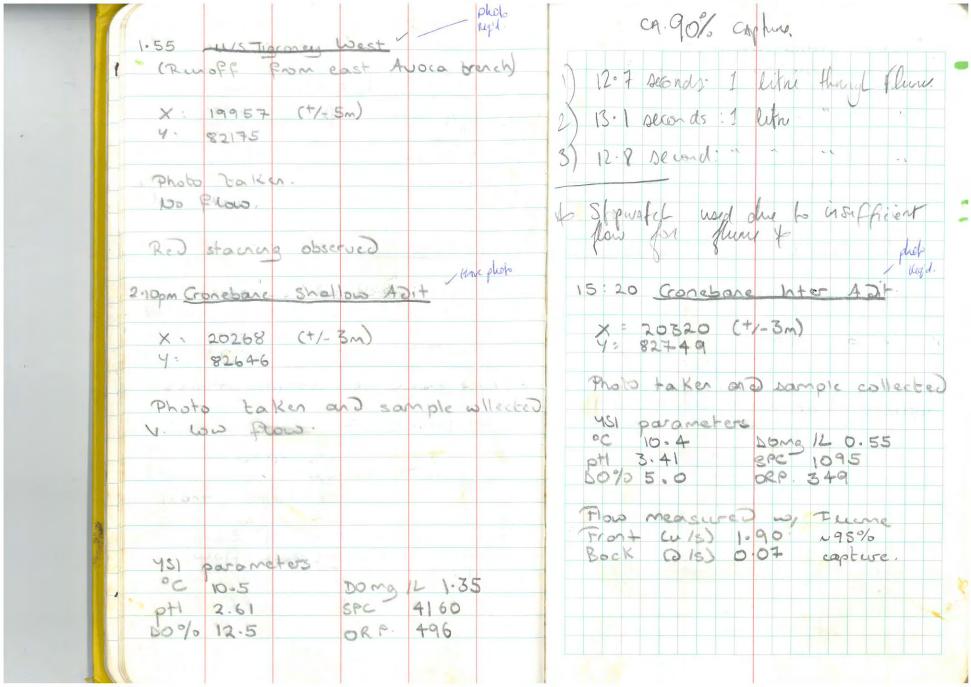
- Collect readings at 5 to 10 minute intervals.
- The well is considered stabilised and ready for sampling when the indicator parameters have stabilised for three consecutive readings.
- Flow rate should not exceed 500 ml/minute during purging or 250 ml/minute during sampling.

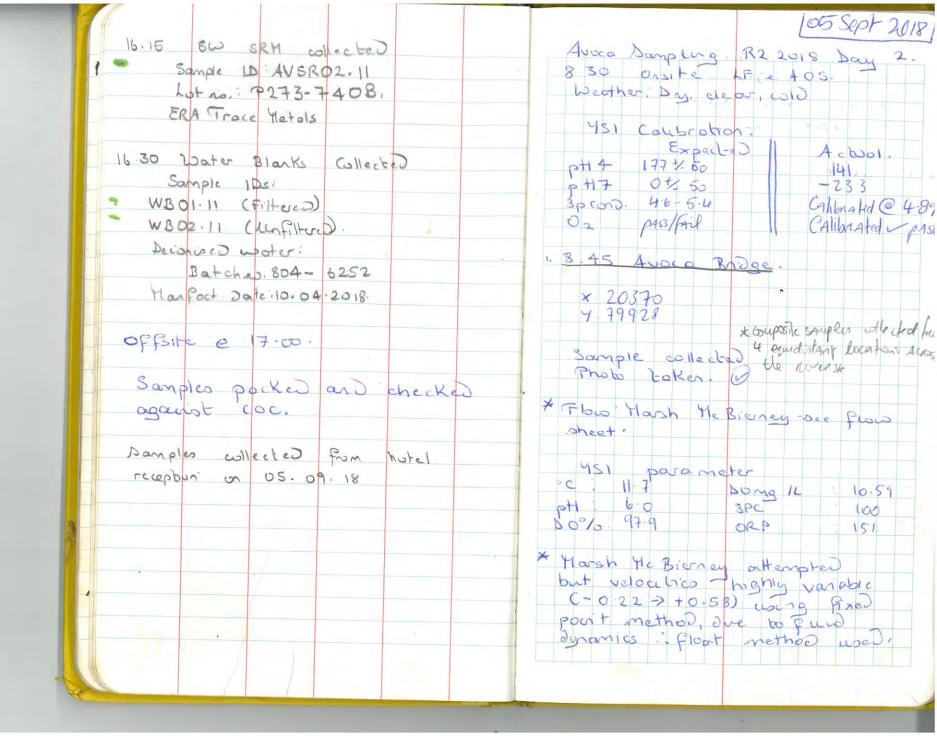
| 1 | MICH | FI | ON | GROI | MON | ATER | SAMPI | ING | SHEET |
|---|------|----|----|------|-----|------|-------|-----|-------|

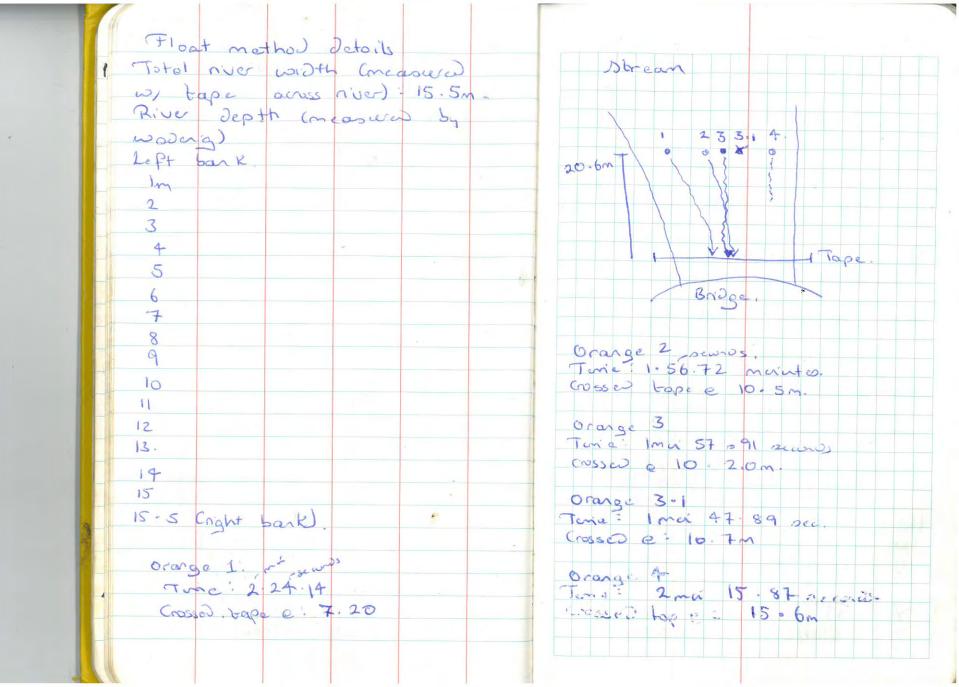
Project: Environmental Monitoring of Former Mining Areas of Silvermines and Avoca


| XMBX DATA   | logger reeds to be        |
|-------------|---------------------------|
| Ropeoved in | order to fit pump in well |


- DBring


| Site Name: MN ET 2. "                             | Site Code: MWET2                                  |
|---------------------------------------------------|---------------------------------------------------|
| Date: 06 Sept 2018.                               | Sample Depth (metres bTOC) Target: 19M Actual: 19 |
| Initial Static Water Level (metres bTOC): 7,545 M | Purging/Sampling Device: WASP.                    |
| Well diameter (mm):                               | Purge start time: 15: 3 8                         |
| Well depth (metres):                              | Sample collection time:                           |
| Well Volume:                                      | Sample Number:                                    |
| Print Sampler Name: AoS L C                       | Samplers Signature:                               |
| Comments: andy, ornest, mild lawing this worn     |                                                   |


|    | Time<br>lapsed<br>(mins) | Water<br>Level<br>(m bTOC) | Drawdown<br>(m) | Flow Rate<br>(ml/min) | Temp. (°C) | рН   | Cond.<br>(µs/cm) | Dissolved<br>Oxygen (%) | Dissolved Oxygen (mg/L) | ORP<br>(mV) | Comments    |
|----|--------------------------|----------------------------|-----------------|-----------------------|------------|------|------------------|-------------------------|-------------------------|-------------|-------------|
|    |                          | < 0.1 m                    | 1               | VI                    | ±3 (°C)    | ±0.1 | ±3 %             |                         | ±10 %                   | ±10 %       |             |
|    | 0                        |                            |                 | Lound                 | 11 - 0     | 4-40 | 3029             | 28-1                    | 2.88                    | 202         | loosed      |
| -  | 5                        | 7-91                       |                 | mi                    | 11:2       | 5.78 | 3254             | 8.4                     | 6.98                    | 71.6        | 2.5%        |
| -  | 10                       | 7.95                       |                 |                       | 11-4       | 5.94 | 3280             | 3 1 2                   | 0.33                    | 45.6        | 5L          |
| 2. | 15                       | 7. 97                      |                 |                       | 11.6       | 6.00 | 3289             | 2.4                     | 0.24                    | 35.9        | 6.5L L      |
| 7  | 20                       | 7.96                       |                 |                       | 11.4       | 6.04 | 3294             | 1.8                     | 0.20                    | 30-2        | 8.5L - Jun  |
| -  | 25                       | 7.925                      |                 |                       | 11.5       | 6.05 | 3295             | 1.8                     | 0:19                    | 28.1        | +1.8 = ? 10 |
|    | 30                       | 7.94                       |                 |                       | 11.5       | 6.06 | 3291             | 1.6                     | 10.17                   | 24.8        | 41 = /13    |
|    |                          | 1                          |                 |                       |            |      |                  |                         | Ŷ.                      | 4.4         |             |
|    |                          |                            |                 |                       |            |      |                  |                         | 1,1                     |             | el el       |
|    |                          |                            |                 |                       |            |      |                  |                         |                         |             |             |
|    |                          |                            |                 |                       |            | 7.   |                  | 7                       | 6                       |             |             |
|    |                          |                            |                 |                       |            | /    |                  |                         | 17                      | 4.          |             |

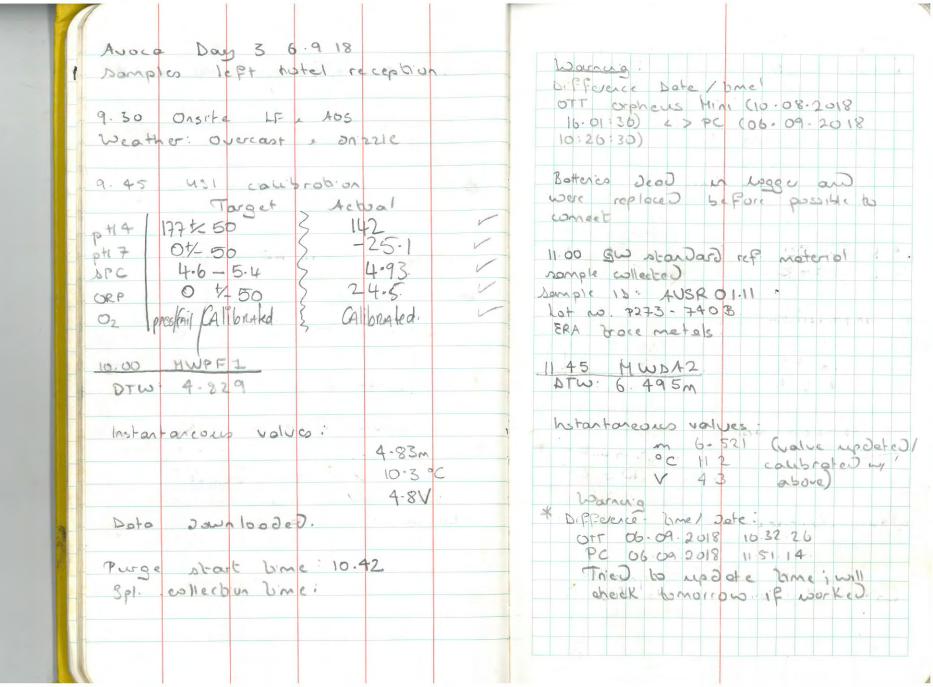

- Collect readings at 5 to 10 minute intervals.
- The well is considered stabilised and ready for sampling when the indicator parameters have stabilised for three consecutive readings.
- Flow rate should not exceed 500 ml/minute during purging or 250 ml/minute during sampling.

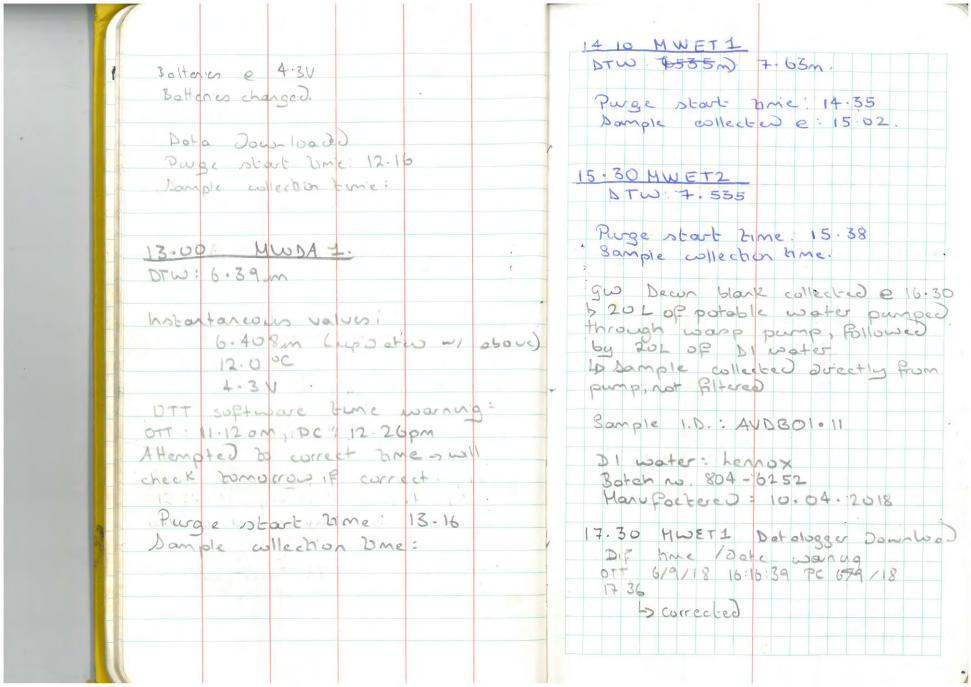








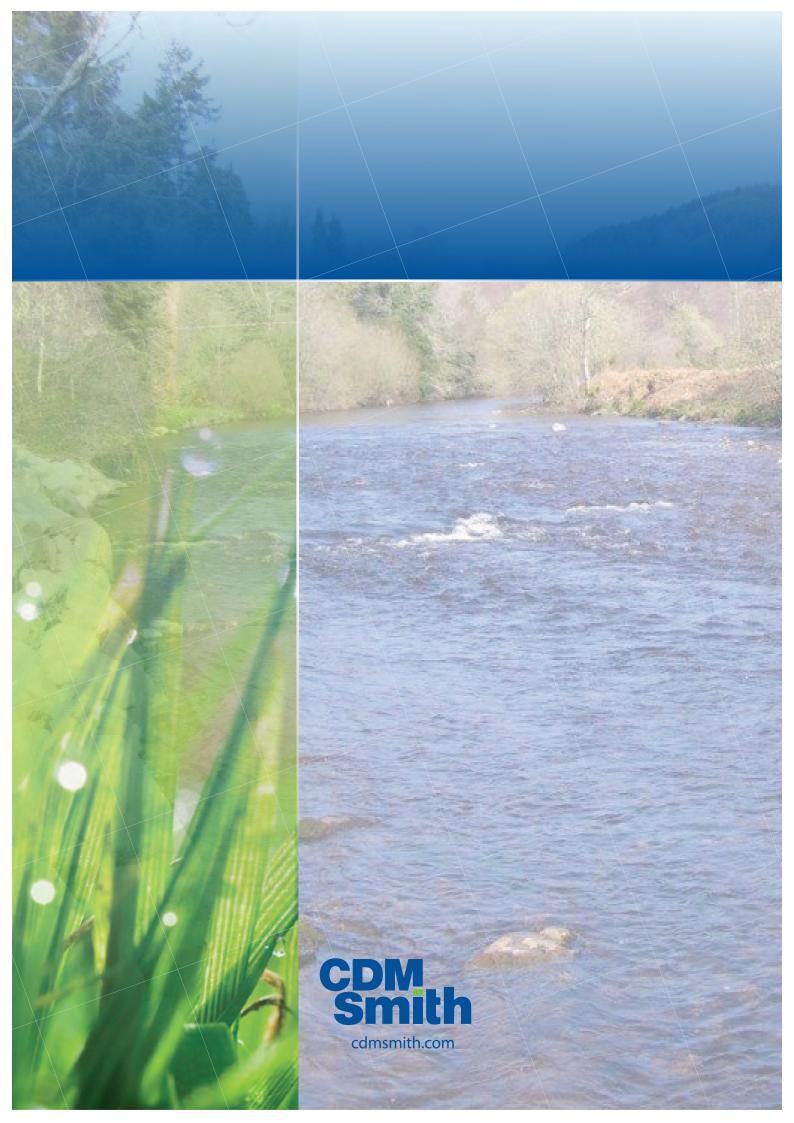




| 4                              | 4                       |                                                                                    |                               |                                  | Flo                           | SAM                          | X                           |                    | PH.                                           |                 | 1 10:45                     | 2                          |                                   |
|--------------------------------|-------------------------|------------------------------------------------------------------------------------|-------------------------------|----------------------------------|-------------------------------|------------------------------|-----------------------------|--------------------|-----------------------------------------------|-----------------|-----------------------------|----------------------------|-----------------------------------|
| 3. 199 42<br>3. 81440          | in Yand Gauging Station | D P W Jahan Leve.                                                                  | uples colocted of photo hihr. |                                  | in Mc Bierry - see Plus sheet | iple collected + photo taken | 19970 (t/-4m)<br>81110      |                    | \$ 12-5 D ng/l: 10.85<br>\$ 5.86 Spc : 113.9. | YSI parqueters. | 5. 15.                      | + Equidistant yours across | *Composite samples collected from |
| Duplicate collectes.  AVSDOILL | Flow From Wicklaw was   | 951 parameters.<br>9C 13.0 DOng/L 11.29<br>pH 5.81 Dec 91.6<br>DO% 107.2 ORP. 202. |                               | A equidistant pourts across nucr | Dample taken composite e      | x: 19939 (+/-3m) y: 31532    | 412 00 upstream of Road Adi | DOT : 106 ON P : 1 | OC: 12.8 Do mall: 1                           |                 | from 4 excidistant points a |                            |                                   |

| 1.5 12°40; U.S. Ballygahan Adult  X: 19936  Y: 81633  - photo taken & Sample collected.  - No flow measurement reguined.                                                                                             | Photo taken and composite  grat sample collected  451 parameters  C: 14.1  Dong 12: 10.59  Pt: 6.20  SPC: 81.7  Doy's: 105  Thom not required      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| SAMPLE NOT COURSILE due to strong  Guntant and water depth. Grab  Sought baken from flowing water body  VSI parameters?  OC: 13:5  OH: 5.93  DO mg/l: 11.1  SPC: 86.3  DOZ: 14:00 DIS Millnerce  X: 20013  Y: 81790. | X: 31995    V: 181,922.  Photo hahun + SAMPLE collected  No flow measurement required  YSI parameters  C: 14,4  DO ng(l: 1099  PH: 6.17  Spc. 188. |
|                                                                                                                                                                                                                      |                                                                                                                                                    |

15.15 White Brage Gauging station 750 - 1000 yelsec flow estimation 1 (Unual) X 19842 (4-3m) X: 19878 (+/-5m) 82018 Soep 2 Photo taken and grab sampk Composite from 4 equipostant 250 - 500 M/sec flow estimation goods across the river chancel blowing our A wider (ismal) taker. frea. xo YSI parameters 15.45 Whites boide . °C:14.3 02mg/L 10-69 OH 6-21 DPC 84.0 X 19773 (+1-3m) 6, 0/D 104 ORP 213 4 82066 ( was a war white Brage) That talken e composite sample collected e 4 combintant points EPA stopp gange @ 2.95 (see show) acoss nuer , woodup 4 29.5cm. \* NB & A number (2) of seeps Tood or the way by whites Bridge BS. 451 parametes DO mall: 10.8 . 6.44 SPC. : 74.1. 106 -D Phopo + GPS wordingtes token: X: 198 73 (+1-5m) : Seep 1

1 "16.00 Upstream of whites Brige Duplicate su sample collected 10 1 AUSD 02.11 X: 19584 (+/-Am) Flow measured wy flow meter 4. 82389 (Marsh MiBierey) > see flow sheet. Composite sample e photo 17.30 Dufoce moter decon blank taken sample collected 481 parameters. Dample 1D: AVDB 02.11 NO % 94.9 13.8 PSPC 68.6 0RP 204. Decon pample collected from sampling DI water from the Decentamented surface mater sampling cup Vale view tob Dy- no flow DI weter: Lennox 16.30 II Avois River Botch No. 804-6252 Dole of man Pocture. 10.04-18. X: 19580 (1/- 4m) 18 UD: UPPOITE Y: 82396 1. Happy I'm - e Damples pocked and shecked YSI parameters: against coc 14.9 Dong /L: 10.63 OH SPC : 77.6 6.97 00% 105 ORP 192 Photo taken a composite sample collected.






14.40 Avoca wells MUDAL and Diplicate sample taken HWBA2 resampled as label 14: 5MSD03.11 on 12 sample set incorrect. & Animal Access and Broking on Ato DouncoDeD from both wells before sompling 14-45 MINDAZ (The as forma) 11.15 Offsite: DTW: 6.395m. Puge start me. 14.54 15:00 Frial surface water Sorple collection June 15-27 Dewn blank collected 15.00 MWDAI (Ihs as Paris) 11 . SMA BO2. 11 DTW: 6.285m Purge start time 15.32. by Collected by sampling DI water Dample collection: from the Decontamerated sampling cup Al water : Lemox Batch no: 804-6252 Date of maniforture 10.04.18.

Inotantarevus data Purge start onie: 17-15 7.65m 10:4°C sample collection time, 17.36. 4.3 V. checked against coc. Data down was (from 1/3/18) 18.35 OFFSITE and batter es changed. 17 45 HWETZ Dato Downward Balteres Dead Bottones replaced Gashus Jata Jountaad Instartareous volves. 7. 568 m 10.3 00 4.8 V her balterics) ort 5.9.18 14.01 PC 6.9.18 17.54 Data Down woded from 1.3-18 and batteries changed. 17.15 qw2\_05 DTW: 5. 735m TD: 6.5 m. Dampled up bailer.

| 1 8.45 Onsite LF = 105                       |       |   | 1.05  | الم م |    |      |     |     | 5   | _   |    |      |     |     | 24  |          |
|----------------------------------------------|-------|---|-------|-------|----|------|-----|-----|-----|-----|----|------|-----|-----|-----|----------|
| Weather: Clear, mild, 217                    |       |   | DO PF | PA    | Re | 11/2 | loc | bo  | · 5 | A   | 15 | 1    | Are | 200 | ex  | <i>P</i> |
| 9.00 YSI Cal.                                |       |   |       |       |    |      |     |     | 2   | No. |    |      | 4   | ,   | sec | ^        |
| e chat Carlor Carlages                       | 1     |   |       | 3     |    |      |     |     |     |     |    |      |     |     |     |          |
| p+17 0 +- 50 ) -23.3                         |       |   |       |       | -  |      |     |     |     |     |    |      |     |     |     | 4        |
| p+14 177+/-50 (143<br>Sp. cond 4.6-5.4 (4.91 |       |   |       |       | *  |      |     |     | 1   |     |    |      |     |     |     | +        |
| O2 Pass / pass / call                        | bnakd |   |       |       | 81 |      | ż.  |     |     |     | i  |      |     |     |     |          |
| 9.15 GW1_05                                  |       |   |       |       |    |      |     |     |     |     |    |      |     |     |     |          |
| DTW: 5,585                                   |       |   |       |       |    |      |     |     |     |     |    |      |     |     |     |          |
| TD: 27.275                                   |       |   |       |       |    |      |     |     |     |     |    | 4    |     |     |     | +        |
| Purge start lime: 9.15                       |       |   |       |       |    |      |     |     |     |     |    |      |     |     | +   | +        |
| Dampled boiler.                              |       |   |       |       |    |      | 60  | 1   |     |     |    |      |     |     |     |          |
| Groundwater Duplicate sample                 |       | - |       | . 0   |    | 1    |     | 44- |     |     |    | 10 1 | 4,  | -   |     |          |
| Sample 1A. AUGDOI. 11.                       |       |   |       |       |    |      |     |     |     |     |    |      |     |     |     |          |
| 11.00 am 59104.                              |       | * | 1     |       |    |      |     |     |     |     |    | 1    |     |     | +   | H        |
| Well and e 25.7m.                            |       | + | -     |       |    |      |     |     |     |     |    | -    |     |     |     |          |
|                                              |       |   |       |       |    |      |     |     |     |     |    |      |     |     |     |          |
| checked against coc.                         |       |   |       |       |    |      |     |     |     |     |    |      |     |     |     |          |
|                                              |       |   |       |       |    |      |     |     |     |     |    |      |     |     |     |          |

